CVPR14 图像检索papers——图像检索
1. Triangulation embedding and democratic aggregation for imagesearch (Orals)
2. Collaborative Hashing (post)
5. Fast Supervised Hashing with Decision Trees for High-DimensionalData (post)
6. Learning Fine-grained Image Similarity with Deep Ranking (post)
7. Congruency-Based Reranking (post)可能
8. Fisher and VLAD with FLAIR (post)可能
9. Locality in Generic Instance Search from One Example (post)
10. Asymmetric sparse kernelapproximations for large-scale visual search (post)
11. Locally Linear Hashing forExtracting Non-Linear Manifolds (post)
12. Adaptive Object Retrievalwith Kernel Reconstructive Hashing (post)
13. Hierarchical Feature Hashingfor Fast Dimensionality Reduction (post)
CVPR15image retrieval reading list
Image retrieval关键词
· FAemb: A Function Approximation-Based Embedding Method for Image Retrieval
· Image Retrieval Using Scene Graphs
· Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-ScaleImage Retrieval
· Early Burst Detection for Memory-Efficient Image Retrieval
· Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval(已读)
· Query-Adaptive Late Fusion for Image Search and Person Re-identification
Hashing关键词
· Supervised Discrete Hashing
· Hashing With Binary Autoencoders
· Reflectance Hashing for Material Recognition
· Deep Hashing for Compact Binary Codes Learning
· Online Sketching Hashing
· Semantics-Preserving Hashing for Cross-View Retrieval
· Face Video Retrieval With Image Query via Hashing Across Euclidean Spaceand Riemannian Manifold
2016
· Learning to Hash for Indexing Big Data——A Survey
公布代码的:
无代码:
- PDH: (ICML2013)
常用数据库
关注的人
注:下面不同的哈希方法的代码可以在他们的主页上找到
-
-
Hamming Distance Metric Learning
Fast Search in Hamming Space with Multi-Index Hashing
-
Spectral Hashing
readMultidimensional Spectral Hashing
-
-
-
参考资料:
他人讲解papers的一些好博文
非哈希方法
-
- Packing and Padding: Coupled Multi-Index for Accurate Image Retrieval
- Bayes Merging of Multiple Vocabularies for Scalable Image Retrieval
- Lp-norm IDF for Large Scale Image Search
- Visual Phraselet: Refining Spatial Constraints for Large Scale Image Search