您好,欢迎来到华拓网。
搜索
您的当前位置:首页八年级数学下册 一次函数教案

八年级数学下册 一次函数教案

来源:华拓网
第2课时 一次函数

数?

、n取何值时,y是x的正比例(2)当m

函数?

解析:(1)根据一次函数的定义,m-1≠0,2-|m|=1,据此求解即可;(2)根据正比例函数的定义,m-1≠0,2-|m|=1,n+3=0,据此求解即可.

解:(1)根据一次函数的定义得2-|m| =1,解得m=±1.又∵m-1≠0即m≠1,∴当m=-1,n为任意实数时,这个函数是一次函数;

(2)根据正比例函数的定义得2-|m|=1,n+3=0,解得m=±1,n=-3.又∵m-1≠0即m≠1,∴当m=-1,n=-3时,这个函数是正比例函数.

方法总结:一次函数解析式y=kx+b的结构特征:k≠0,自变量的次数为1,常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.

探究点二:根据实际问题求一次函数解析式

【类型一】 列一次函数解析式 写出下列各题中y与x的函数关

系式,并判断y是否是x的一次函数或正比例函数?

(1)某村耕地面积为106(平方米),该村人均占有耕地面积y(平方米)与人数x(人)之间的函数关系;

(2)地面气温为28℃,如果高度每升高1km,气温下降5℃,气温x(℃)与高度y(km)之间的函数关系.

解析:(1)根据人均占有耕地面积y等于总面积除以总人数得出即可;(2)根据高度每升高1km,气温下降5℃,得出28-5y=x求出即可.

106

解:(1)根据题意得y=,不是一次函

x数;

1

(2)根据题意得28-5y=x,则y=-x

5

1.一次函数的定义及解析式的特点;(重点)

2.一次函数与正比例函数的关系.(难点)

一、情境导入

1.仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式.

2.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米,求树高(米)与年数之间的函数关系式,并算一算4年后这些树约有多高.

3.小徐的爸爸为小徐存了一份教育储蓄.首次存入1万元,以后每个月存入500元,存满3万元止.求存款数增长的规律.几个月后可存满全额?

以上3道题中的函数有什么共同特点? 二、合作探究

探究点一:一次函数的定义 【类型一】 辨别一次函数 下列函数是一次函数的是( )

8

A.y=-8x B.y=-

x8

C.y=-8x2+2 D.y=-+2

x解析:A.它是正比例函数,属于特殊的一次函数,正确;B.自变量次数不为1,不是一次函数,错误;C.自变量次数不为1,不是一次函数,错误;D.自变量次数不为1,不是一次函数,错误.故选A.

方法总结:一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.

【类型二】 一次函数与正比例函数

已知y=(m-1)x2|m|+n+3.

(1)当m、n取何值时,y是x的一次函

+28

5

,是一次函数. 方法总结:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.

【类型二】 确定一次函数解析式中系数的值 已知一次函数y=kx+b中,当自

变量x=3时,函数值y=5;当x=-4时,y=-9.求k和b的值.

解析:把两组对应值分别代入y=kx+b得到关于k、b的方程组,然后解方程组求出k和b.

解:(1)∵当自变量x=3时,函数值y=5,当x=-4时,y=-9,

∴3k+b=5,-4k+b=-9,解得k=2,

b=-1. 方法总结:解决此类问题就是将自变量x的值及与它对应的函数值y的值代入所设

的解析式,得到关于待定系数的方程或方程

组解答即可.

三、板书设计

1.一次函数的定义

2.一次函数与正比例函数的区别和联系

3.根据实际问题求一次函数解析式

在本节课的教学设计与教学实践中,不仅关注学生获得的知识,而且注重知识获得的过程和方法,同时关注学生的全面发展.由于教学方法得当,教学过程设计合理,师生互动关系平等、和谐,所以能较好的完成知识传授与促进学生发展的任务,在数学课堂教学改革的实践中取得较好的教学效果.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo3.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务