您好,欢迎来到华拓网。
搜索
您的当前位置:首页Long GRBs from binary stars runaway, Wolf-Rayet progenitors

Long GRBs from binary stars runaway, Wolf-Rayet progenitors

来源:华拓网
LongGRBsfrombinarystars:runaway,

Wolf-Rayetprogenitors

M.Cantiello∗,S.-C.Yoon†,N.Langer∗andM.Livio∗∗

arXiv:0709.0829v1 [astro-ph] 6 Sep 2007AstronomicalInstitute,UtrechtUniversity,

Princetonplein5,3584CC,Utrecht,TheNetherlands

DepartmentofAstronomyandAstrophysics,UniversityofCalifornia,SantaCruz,CA950,USA

∗∗

SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218Abstract.Thecollapsarmodelforlonggamma-rayburstsrequiresarapidlyrotatingWolf-Rayetstarasprogenitor.WetesttheideaofproducingrapidlyrotatingWolf-Rayetstarsinmassiveclosebinariesthroughmassaccretionandconsecutivequasi-chemicallyhomogeneousevolution—thelatterhadpreviouslybeenshowntoprovidecollapsarsbelowacertainmetallicitythresholdforsinglestars.Thebinarychannelpresentedheremayprovideameansformassivestarstoobtainthehighrotationratesrequiredtoevolvequasi-chemicallyhomogeneousandfulfillthecollapsarscenario.Moreover,itsuggeststhatapossiblylargefractionoflonggamma-rayburstsoccursinrunawaystars.

Keywords:Stars:binary–Stars:rotation–Stars:evolution–Stars:mass-loss–Supernovae:general–Gammarays:burstsPACS:97.

INTRODUCTION

Longgamma-rayburstsarethoughttobeproducedbyasubsetofdyingmassiveandpossiblymetal-poorstars[1,2,3].Withinthecurrentlyfavoredcollapsarscenario[4],theburstisproducedbyarapidlyrotatingmassiveWolf-Rayet(WR)starwhosecorecollapsesintoablackhole[5].Whilesinglestarevolutionmodelswithoutinternalmagneticfieldscanproducesuchconfigurations[6,7],onlymodelsincludingmagneticfieldsarecapableofreproducingtheslowspinsofyoungGalacticneutronstars[8,9]andwhitedwarfs[10],duetothemagneticcore-envelopecouplingduringthegiantstage.

YoonandLanger[11],Yoonetal.[12]andWoosleyandHeger[13]recentlyshowedthatbelowacertainmetallicitythreshold,veryrapidlyrotatingsinglestarsavoidthemagneticbrakingofthecorethroughtheso-calledquasi-chemicallyhomogeneousevo-lution:rotationallyinducedmixingprocesseskeepthestarclosetochemicalhomogene-ity,andthusthegiantstageisavoidedaltogether.Whilethesemodelsaresuccessfulinproducingmodelswhichfulfillallconstraintsofthecollapsarmodel,theyrequireveryrapidinitialrotation.

Thequestionthusariseswhetherthequasi-chemicallyhomogeneousevolutionofmassivestarscanalsobeobtainedinmasstransferringmassivebinarysystems[14],sinceinsuchsystemsthemassgainercanbespun-uptoclosetocriticalrotation[see15,6],independentofitsinitialrotationrate.

FIGURE1.Leftpanel:evolutionarytrackofthemassgainerinour16M⊙+15M⊙earlyCaseBbinarymodel(5dinitialorbitalperiod)intheHRdiagram(solidline),fromthezeroagemainsequenceuptocorecarbonexhaustion.Themainevolutionaryphasesarelabeledbynumbers(seelegend).Thedashedlineshowstheevolutionarytrackofaveryrapidlyrotating(󰀁init/󰀁K=0.9)24M⊙singlestar.BothstarshaveSMCmetallicity,andundergoquasi-chemicallyhomogeneousevolution(seetext).Rightpanel:evolutionoftheinternalstructureofthemassgainerofthecomputed16M⊙+15M⊙earlyCaseBbinarysequence,asfunctionoftime,fromthezero-agemainsequencetocorecarbonexhaustion.Thetimeaxisislogarithmic,withthetimeofcorecollapseaszeropoint.Convectivelayersarehatched.Semiconvectivelayersaremarkedbydots(reddotsintheelectronicversion).Gray(blue)shadingindicatesnuclearenergygeneration(colorbartotherightofthefigure).Thetopmostsolidlinedenotesthesurfaceofthestar.

THEMODEL

Weusea1-Dhydrodynamicbinaryevolutioncodetosimulatetheevolutionofa16+15M⊙binarymodelwithaninitialorbitalperiodof5daysandSMCmetallicity(Z=0.004).Internaldifferentialrotation,rotationallyinducedmixingandmagneticfieldsarein-cludedinbothcomponents,aswellasnon-conservativemassandangularmomen-tumtransfer,andtidalspin-orbitcoupling.DetaileddescriptionofthecodeandoftheadoptedphysicscanbefoundinCantielloetal.[16]andreferencestherein.

WechoseanearlyCaseBsystemwithaninitialmassratioclosetoonefortworeasons.Firstly,theexpectedmasstransferefficiencyforthiscasewasabout60%(meaningthat60%ofthetransferedmattercanberetainedbythemassgainer),basedonthecalculationsbyWellstein[17],Langeretal.[18],andPetrovicetal.[15].Secondly,aCaseBratherthanCaseAsystemwaschosentoavoidsynchronizationafterthemajormasstransferphase.

RESULTS

Theevolutionofthebinarysystemproceededasfollows(cf.Table1).Theinitialrotationalvelocityofbothstarshasbeensetto230kms−1,butbothstarssynchronizewiththeorbitalrotationwithinabout1Myr,toequatorialrotationalvelocitiesofonlyabout50kms−1.Rotationallyinducedmixingbeforetheonsetofmasstransferisthusnegligible—incontrasttotypicalOstarsevolvinginisolation[19,20].Theinitially

TABLE1.Majorevolutionaryphasesofthecomputed16M⊙+15M⊙earlyCaseBbinarysequence.Thebinarycalculationendsaftercorecarbonexhaustionofthemassloser(theprimary),andthemassgainer(thesecondary)isthenevolvedasasinglestar.Weshowevolutionarytime,massesofbothstars,orbitalperiod,surfacerotationalvelocityofbothstars,surfaceandcoreheliummassfractionofthemassgainer,andorbitalvelocityofthemassgainer.Theabbreviationsfortheevolutionaryphasesare:ZAMS=zeroagemainsequence;ECHB=endcorehydrogenburning;ICB=ignitionofcarbonburning;ECCB=endcorecarbonburning.ThenumberedevolutionarystagescorrespondtothosegiveninFig.1,leftpanel.

Time

1ZAMS

9.

3endCaseB

11.3018.10

6ICBsecondary

18.56

12.83

258

0.000

0.996

3.71–

20.8616.76

42.7–

40–

767202

0.4570.996

0.4410.956

27–

15.92

14.94

5.1

96

85

0.879

0.248

198

M1

M2

P

󰀁rot,1

󰀁rot,2

Yc,2

Ys,2

󰀁orbit,2

stars.Thisconfirmsthatthescenarioofquasi-chemicallyhomogeneousevolutionmightnotberestrictedtosinglestars,butmayapplytotheaccretingcomponentofmassiveclosebinariesaswell.

Whileweprovideonlyoneexample,itseemslikelythatthisscenarioappliestomostmassiveclosebinarycomponentswhichaccreteorgainanappreciableamountofmass;thismayencompassCaseAbinariesandearlyCaseBbinaries[21,22,23].CaseAmergerarealsolikelycontributingtothisscenario.Whilethemergedobjectwillhavemoremassthantheinitiallymoremassivestarinthebinary,theproductwillbeextremelyrapidlyrotatingduetotheorbitalangularmomentum,asinthecaseofsomebluestragglers[24].

Binariesandthedistributionofrotationalvelocities

Thebestconstraintsofaronthedistributionofinitialrotationalvelocities(IRF)comesfromtherecentstudyofyoungOstarsintheSMC,mostlyfromtheclusterNGC346[25].AccordingtoYoonetal.[12],thethreemostrapidrotatorsfromthesampleof21Ostarswouldqualifyforthequasi-chemicallyhomogeneousevolutionscenario,andremarkably,allthreestarsarefoundtobehelium-enhanced.ThesimplestapproachtounderstandthosestarsistoassumethattheycorrespondtothetipoftheIRF.

However,thatdataofMokiemetal.[25]revealsanotherinterestingfeature:twoofthethethreementionedstarsarerunawaystars,withradialvelocitiesdeviatingby30...70kms−1fromtheaverageclusterradialvelocity.Whiledealingwithlownumberstatistics,thisinformationopensanotherpossibility:thatthemostrapidlyrotatingyoungOstarsintheSMCareproductsofbinaryevolution.AcloserexaminationoftheIRFderivedbyMokiemetal.[25]appearstosupportthisidea:Whilethethreerapidrotators

−1−1show󰀁sini>∼290kms,allotherstarshave󰀁sini<∼210kms.

Thefollowinghypothesisthereforeseemsconceivable:TheIRFofsingleOstarsintheSMCendsatabout210kms−1—tooearlytoallowquasi-chemicallyhomogeneousevolutionandcollapsarformation.However,massiveclosebinaryevolutionenhancestheIRFtowhatwemaycalltheapparentIRFasmeasuredbyMokiemetal.[25],whichleadstotheredshiftdependentGRBrateasworkedoutbyYoonetal.[12].AccordingtothebinarypopulationsynthesismodelofPodsiadlowskietal.[21],about10%ofallmassivebinariesmightleadtoaCaseAmergerorearlyCaseBmasstransfer,whichissufficienttopopulatetherapidlyrotatingpartoftheIRFofMokiemetal.Inthatcontext,therapidlyrotatingOstarinthesampleofMokiemetal.[25]whichdoesnotappearasrunawaystarcouldeitherhaveanundetectedhighpropermotion,oritcouldbetheresultofaCaseAmerger—wherenorunawayisproduced.

EffectsfromrunawayGRBs

TherunawaynatureofaGRBprogenitor,asobtainedinourexample,hasimportantobservationalconsequencesforboththepositionsofGRBs,andtheirafterglowprop-erties.Concerningtheafterglow,itisrelevantthatthemediumclosetoaWRstarhas

thedensityprofileofafree-streamingwind,andanalyticalandnumericalcalculationsbothsuggestthatthefreewindofasingleWRstartypicallyextendsovermanyparsec[26].However,fromtheanalysisofGRBafterglows,aconstantcircumstellarmediumdensityhasbeeninferredinmanycases[27,28,29,30].ApossibleexplanationhasbeenproposedbyvanMarleetal.[26],whosimulatedthecircumstellarmediumaroundamovingWRstar.AstheGRBjetaxisislikelyperpendiculartothespacevelocityvec-tor,thejetescapesthrougharegionofthebow-shockwherethewindterminationshockisveryclosetothestar.Therefore,thejetmayenteraconstantdensitymediumquicklyinthissituation.

ConcerningtheGRBpositions,sincethespinaxisofthestarsinaclosebinarysystemarelikelyorthogonaltotheorbitalplane,theobservationofaGRBproducedbytheproposedbinarychannelispossibleonlyifthebinaryorbitisseennearlyfaceon.ThenthedirectionofmotionoftherunawayGRBprogenitormustbeorthogonaltothelineofsight,allowingtheprogenitor,forthegivenspacevelocity,toobtainthemaximumpossibleapparentseparationfromitsformationregion.ThefindingofHammeretal.[31],thatthenearestthreelonggamma-rayburstsmaybeduetorunawaystarsisinremarkableagreementwithourscenario.Whilethecollapsarprogenitorinourbinarymodeltravelsonly200pcbeforeitdies,comparedtothe400...800pcdeducedbyHammeretal.[31],binaryevolutionresultinginhigherrunawayvelocitiesarecertainlypossible[15].ItremainstobeanalyzedwhethertherunawayscenarioiscompatiblewiththefindingthatlongGRBsaremoreconcentratedinthebrightestregionsoftheirhostgalaxiesthancorecollapsesupernovae[32].

REFERENCES

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.

P.Jakobsson,G.Björnsson,J.P.U.Fynbo,G.Jóhannesson,J.Hjorth,B.Thomsen,P.Møller,D.Watson,B.L.Jensen,G.Östlin,J.Gorosabel,andE.H.Gudmundsson,MNRAS362,245–251(2005).

N.Langer,andC.A.Norman,ApJL638,L63–L66(2006).

M.Modjaz,R.Kewley,R.Kirshner,K.Stanek,P.Challis,P.Garnavich,andJ.Greene,J.E.andPrieto,astro-ph/0701246,AJsubmitted(2007).S.E.Woosley,ApJ405,273–277(1993).

A.I.MacFadyen,andS.E.Woosley,ApJ524,262–2(1999).

J.Petrovic,N.Langer,S.-C.Yoon,andA.Heger,A&A435,247–259(2005).R.Hirschi,G.Meynet,andA.Maeder,A&A443,581–591(2005).A.Heger,S.E.Woosley,andH.C.Spruit,ApJ626,350–363(2005).

C.D.Ott,A.Burrows,T.A.Thompson,E.Livne,andR.Walder,ApJS1,130–155(2006).M.Suijs,N.Langer,S.C.Yoon,A.J.Poelarends,andA.Heger,inprep(2007).S.-C.Yoon,andN.Langer,A&A443,3–8(2005).

S.-C.Yoon,N.Langer,andC.Norman,A&A460,199–208(2006).S.E.Woosley,andA.Heger,ApJ637,914–921(2006).D.Vanbeveren,andC.deLoore,A&A290,129–132(1994).

J.Petrovic,N.Langer,andK.A.vanderHucht,A&A435,1013–1030(2005).M.Cantiello,S.-C.Yoon,N.Langer,andM.Livio,A&A465,L29–L33(2007).S.Wellstein,PhDthesis,UniversityofPotsdam(2001).

N.Langer,S.-C.Yoon,J.Petrovic,andA.Heger,“Binaryevolutionmodelswithrotation,”inIAUSymposium,editedbyA.Maeder,andP.Eenens,2004,p.P.535.A.Heger,andN.Langer,ApJ4,1016–1035(2000).G.Meynet,andA.Maeder,A&A361,101–120(2000).

P.Podsiadlowski,P.C.Joss,andJ.J.L.Hsu,ApJ391,246–2(1992).

22.S.Wellstein,andN.Langer,A&A350,148–162(1999).

23.S.Wellstein,N.Langer,andH.Braun,A&A369,939–959(2001).

24.M.Livio,“BlueStragglers:TheFailureofOccam’sRazor?,”inASPConf.Ser.53:BlueStragglers,

editedbyR.A.Saffer,1993,p.3.

25.M.R.Mokiem,A.deKoter,C.J.Evans,J.Puls,S.J.Smartt,P.A.Crowther,A.Herrero,N.Langer,

D.J.Lennon,F.Najarro,M.R.Villamariz,andS.-C.Yoon,A&A456,1131–1151(2006).26.A.J.vanMarle,N.Langer,A.Achterberg,andG.Garcaía-Segura,A&A460,105–116(2006).27.R.A.Chevalier,andZ.-Y.Li,ApJ536,195–212(2000).28.A.Panaitescu,andP.Kumar,ApJ5,667–677(2001).29.A.Panaitescu,andP.Kumar,ApJ571,779–7(2002).

30.R.A.Chevalier,Z.-Y.Li,andC.Fransson,ApJ606,369–380(2004).

31.F.Hammer,H.Flores,D.Schaerer,M.Dessauges-Zavadsky,E.LeFloc’h,andM.Puech,A&A4,

103–111(2006).

32.A.S.Fruchter,A.J.Levan,L.Strolger,P.M.Vreeswijk,S.E.Thorsett,D.Bersier,I.Burud,

J.M.CastroCerón,A.J.Castro-Tirado,C.Conselice,T.Dahlen,H.C.Ferguson,J.P.U.Fynbo,P.M.Garnavich,R.A.Gibbons,J.Gorosabel,T.R.Gull,J.Hjorth,S.T.Holland,C.Kouveliotou,Z.Levay,M.Livio,M.R.Metzger,P.E.Nugent,L.Petro,E.Pian,J.E.Rhoads,A.G.Riess,K.C.Sahu,A.Smette,N.R.Tanvir,R.A.M.J.Wijers,andS.E.Woosley,Nature441,463–468(2006).

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo3.cn 版权所有 湘ICP备2023017654号-3

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务