E.Abdalla∗,M.C.B.Abdalla†
arXiv:cond-mat/9406119v1 30 Jun 1994CERN,TheoryDivision,CH-1211Gen`eve23,Switzerland
Abstract
WeconsiderthequantumHalleffectintermsofaneffectivefieldtheoryformulationofthe
edgestates,providinganaturalcommonframeworkforthefractionalandintegraleffects.
PACS:73.40.Hm,11.10.Kk,72.15.Nj,11.30.Rd
CERN-TH7344June94
cond-mat/9406119
TherehasbeenalotofinterestinthelastyearsontheQuantumHallEffect(QHE)1.Theintegraleffect(IQHE)hasbeengivensimpleexplanation2,butthefractionaleffect(FQHE)ismoreinvolvedandrequirestheconceptofcollectivebehavioroftheelectrons3.Inparticular,Jain4usedaunifiedschemeinordertoexplainbotheffects,sincetheex-planationoftheintegraleffectwasbelievedtobedescribedintermsofnon-interactingelectrons1,whilethefractionaleffectincludestheabovementionedcollectivephenomenon.Theideaistointroducecopiesoftheelectron,andconsidercondensationsofsuchfields4.Furtherunderstandingcanbeachievedonceoneverifiesthatchiralityplaysanessen-tialroleintheexplanationoftheHalleffect,asstressedrecently5,6,7,8.OurpurposehereistoprovideafieldtheoreticalapproachtothequantumHalleffect,insuchawaythatthecollectiveelectronphenomenonisnaturallyaccomodated,beingjustaconsequenceofthedescriptionofelectronssqueezedinasmallspaceregion,andthechiralnatureoftheinteraction5−8,leadingtochiralanomaly,whichtogetherwiththesolitonbehaviorinher-itedfromthecollectiveeffect,naturallyaccomodatesthefractionaleffect,andgives,asabyproduct,theintegraleffectasaparticularcase.Werefrainfromreviewingthesubject,referingtothevastliterature1,9.However,wehavetoexplicitlyquotesomeresultswhichwillbeusedinthefollowing,aswellasrefertoasacheckofthecorrectednessoftheprocedure.
WestartoutoftheLagrangeandensityoffour-dimensionalQED,whichreads
L=
ΨiΓµAµΨi
,
i=1,...,N
,
(1)
wherethegammamatricesΓµandtheΨfieldarefour-dimensionalandread
0−1
10
0−σa
σ0
a
Γ0=
,
Γa=
,
χ
Ψ=
η
,(2)
σaaretheusualPaulimatriceswitha=1,2,3andχandηarebispinors.InthisnotationtheLagrangianis
L=χ+∂0χ+η+∂0η−η+σa∂aη−χ+σa∂aη+χ+χA0+η+ηA0−e(χ+σaχ+η+σaη)Aa==
η∂η+(ηγµη)Aµ+χ+σM∂Mχ+η+σM∂Mχ
ψIγµψIAµ+M−derivatives,I=1,2andM=2,3.
(3)
Intheabovewehaveusedthefollowingnotation:ThespinorfieldψI=1standsforχ,thefirstbispinor,whileψI=2correspondstoγ1η(t,−x),andthetwo-dimensionalgamma
32
matricesareγ0=σ,γ1=σ,andγ5=γ0γ1;theslashderivativeis∂=γµ∂µ.Therefore,forΓµtheindexµgoesfrom0to3,whileforγµittakesthevalues0,1.Weneglectthederivativesinthe2and3directions(M),consideringonlythetwo-dimensionalproblem.
1
IntegratingoverthegaugefieldAµ(µ=0,···,3)wegetL=
ψjγµψjDµν
ψjψjD33
ψjγ5ψjD22
ψji∂ψj+geff
ψkγµψk+geff(
ψjγ5ψj)2
,(5)
wheretheeffectivecurrentvertexcorrespondingtoµ=2intwodimensionsis
ψψ.WefindalsoatrivialThirringinteraction,whichisneglected
inthefollowing.Theelectromagneticfieldisresponsiblefortheinternalinteractionsinthecristal,andfortheformationofthetwo-dimensionallayer.Nowtheeffectivetwo-dimensionalinteractionisthechiralGross-Neveu(CGN)theory,whichhasbeenmuchstudiedintheliterature(see[10]andreferencestherein).Sincetheelectromagneticfieldhasbeenusedinordertoformthesystem,weshallforthetimebeingdisregarditsinteraction.Laterwehavetoreconsiderit,inordertoknowtheinteractionofthesamplewiththeexternalfieldsresponsablefortheHalleffect.AsfarastheCGNinteractionisconcerned,werecallthefollowingfacts.Thesolutionofsuchatheoryisgivenintermsof
ˆj,whichsatisfythenon-linearrelation10,11solitonsψ
j···ψj+∼ǫjj···jψψ12N−112N−1j
,
(6)
whereontherighthandsideasuitableredefinitionoftheKlein10factorandthenormal
productprescriptionarerequired.
Suchsolitonsarechargelessfields,sincetheU(1)-chargehasbeenseparatedinorderthattheaboverelationbevalid.Infact,thegaugeinteractionhasbeenusedupinthequantumgaugedegreesoffreedom,inorderthatthetwo-dimensionalinfra-redbehaviordoesnotcauseproblems.AsshownbyWen12,theexcitationsresponsablefortheQHEcontainseveralbranches.Infact,theexcitationsineachbranchcarryafractionalcharge.SuchedgeexcitationsformtheFermiliquid.However,asstressedbyWen,thefermionsintheFermiliquidarenottheelectrons,butdescribetheedgeexcitation,apossibilityopenedbytheboson/fermiondualityintwodimensions.ThismeansthattheFermiliquidisbuiltofsolitons,describedbygeneralizedstatistics13,14.
Thenextproceduretobefollowedconcernstheinteractionofthesolitonswiththeexternalgaugefields.Thegaugeinteractionofthedegeneratesolitonsdisplayinganap-parentSU(2N−1)symmetry,withthegaugefieldisfundamentallyimportantinordertoexplaintheeffect.Thediscussionofgaugeinvarianceinthiscontextisgivenin[15].Fromthefactthatwehaveaboundstatestructure,orcollectiveapproachofthetypepicturedbyeq.(6),wecandescribethephysicalelectronfieldbythel.h.s.of(6)times
j),sinceitissuchfieldwhichhasphysicalinterpretation.ThistheU(1)factor(ψj=eiχψ
meansthatwecandistributethechargeequallyamongthesolitonfields,andtrytofindan
2
effectiveLagrangeanwhichdisplaysthedesiredfeaturesoftheHalleffect.Asapuretwo-dimensionaltheory,thechiralGrossNeveumodelpresentsfieldswithgeneralizedstatistics.Asafour-dimensionaltheoryweinterpreteitsmeaningasthefactthatonlyboundstatesoftheform(6)describethephysicalelectron.Therefore,wesupposethatthephysicalelectronisoftheaboveform,multipliedbytheconvenientexponentialrepresentingtheU(1)charge,thatis
ˆeψ
−iχ/n
+
=e
iχ
−iχ/n−iχ/nˆjeˆjeǫjj1···jnψ···ψ1n
e
,(7)
andeachofthesolitonscarriesacharge
ψji∂ψj+eˆ
4π
AµAµ+(ψ−selfinteractions)
,(8)
wherewefollowed[5,6]andintroducedtheinteractionoftheelectromagneticfieldwith
ψjγµ1−γ5thecurrentofdefinitechirality,thatis
17
,andaˆ=(2N−1)arepresentstheregularizationambiguity2N−1
(seebelow).IntheQHEchiralityplaysafundamentalrole.Itiswellknownthatchiralgaugeinteractionsareanomalous10,17,18,andtwo-dimensionalchiralQEDwithanomalousbreakdownofgaugeinvariance17admitsexactsolutionsinapositivemetricHilbertspacerespectingunitarity,providedtheparametera,definedabove(see[17])isrestrictedtoa≥1.Infact,theJR17termae2A2µtakesaccountoftheambiguityintheregularizationprocedureresultingfromthelackofgaugeinvariance.ItmayalsobeobtainedasthemasslesslimitoftheProcatheory10.
ThisisourproposalfortheeffectivefieldtheoryLagrangeantodescribetheQHE.ThereforewearriveatthechiralQED2interaction,togetherwithchiralGross-Neveutypeself-interactionfortheFermifields,aswellastheconstraint(6).SincetheessenceofthechiralGross-Neveuself-interactionistoimplytherelation(6)characteristicofthetwo-dimensionaltheory,whiletheHalleffectitselfdependsontherelationbetweenthecurrentandtheexternalgaugefield,wesimplifymatters,consideringchiralQED2asthemodelfortheQHE,togetherwithrelation(6).(Infact,inthepresenceofimpuritiesthefreeelectronpictureholdstrue13,14).
Aneffectivebosonictheoryisobtainedbymeansofthecomputationofthefermionicdeterminantintwodimensions,throughthePolyakov-Wiegmanformula19.Insuchacase,
3
integrationoverthefermionsleadstoanexternalgaugefielddependentpartitionfunctionoftheform102a
ˆ2LidxˆeiW[A]
e=e
4π
wheretheWZWfunctionalisgivenbytheexpression
Γ[h]=
1
4π
i
−1
µ)h,d2xAµh(∂µ−∂
(10b)
trǫµν
1
dr
0
−1−1−1
d2xh∂rhh∂µhh∂νh.(10c)
IntheabovewechoseA−=
2
eˆ
(∂µφj)2+
j
2
j
(∂µφj)−
2
1
2π
A
µ
j
µ)φj+(∂µ−∂
aˆeˆ2
2π
i
ˆeˆν)φi+a(∂ν−∂
2π
(13)
.
Considernowthe(classicallyconserved)currents
µ
=JL
µ)Aµ=0(∂µ−∂
Aµ
.,
eˆ
2π
(14)
µ
=−(gµν+ǫµν)(∂νφi−eˆAν)JiR
µ
,asexpected,Inthequantumtheorywehaveconservationoftheright-movingcurrentJiR
µ
=0∂µJiR
,(15)
buttheleftcurrentisanomalous!Indeed,wehave
µ
∂µJL
=(2N−1)
eˆ2
2π(2N−
=
e2
1)2
µAµ(a−1)∂µ+∂
,
,wereadtheHallconductivityfromtheanomaly
coefficient.Thefirstterm,namely(a−1)∂µAµisapuretwo-dimensionaleffect,anddoes
,Busualsystem.Therefore,thenotappeariftheexternalgaugefielddescribestheE
(minimal)Hallconductivityisgivenbythecoefficientoftheanomaly22,
σH=
e2
2ǫµνF
µν
2π5
eˆ2δijδ′(x−y),
(19)
whichshouldbecomparedto[12].Moreover,theW∞algebraobtainedforthenon-relativisticelectrongasdescription23canbeunderstoodasthealgebraofhigherspinchiralcurrentstudiedis[27]fortheabeliancase,andin[28]inthenon-abeliancase.Suchhigher-dimensionalalgebrasunderlinethemodelsconsidered21.
Althoughwedidnotdiscusstheissueofthehierarchyofthedifferentfillingfactors,itshouldbeclearatthispointthatoncewehavegotten(18),andconsequentlythesimplestfillingfactorν=1/3(forN=2),theargumentsusedin[29]nowapply.
ThisworkwaspartiallysupportedbyCAPES(E.A.),Brazil,undercontractNo.1526/93-4andbyCNPq(M.C.B.A.),Brazil,undercontractNo.204220/77-7.
References[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]
R.E.PrangeandS.M.Girvin,ed.,TheQuantumHallEffect,Springer,Berlin,1990R.B.Laughlin,Phys.Rev.B23(1981)5632-5633R.B.Laughlin,Phys.Rev.Lett.50(1983)1395-1398
J.K.Jain,Phys.Rev.Lett.63(19)199;Phys.Rev.B40(19)8079
L.Chandar,FractionalQuantumHallEffectfromAnomaliesinWZNWModel,PreprintSU-4240-569,february,1994
A.P.Balachandran,L.ChandarandB.Sathhiapalan,DualityandtheFractionalQuantumHallEffect,PreprintSU-4240-578,May,1994M.Stone,Phys.Rev.B42(1990)8399-8404X-G.Wen,Phys.Rev.B41(1990)12838-12844
M.Stone,Ed.,QuantumHallEffect,WorldScientific,1992
E.Abdalla,M.C.B.AbdallaandK.Rothe,Non-perturbativeMethodsinTwo-dimen-sionalQuantumFieldTheory,WorldScientific,1991R.K¨oberle,V.Kurak,J.A.Swieca,Phys.Rev.D20(1979)7;ED20(1979)2638X-G.Wen,Phys.Rev.Lett.(1990)2206;NSF-ITP--157preprint,(unpub-lished)
F.Wilczek,Ed.,FractionalStatisticsandAnyonSupercondutivity,WorldScientific,1990
S.Forte,Rev.Mod.Phys.(1992)193
R.B.Laughlin,FractionalStatisticsandQHE,inFractionalStatisticsandAnyonSupercondutivity,Ed.,F.Wilczek,WorldScientific,1990R.Tao,Y.S.Wu,Phys.Rev.B30(1984)1097.
R.B.LaughlinPhys.Rev.Lett.50(1983)1395;W.P.SuandJ.R.SchriefferPhys.Rev.Lett.46(1981)738
R.JackiwandR.Rajaraman,Phys.Rev.Lett.(1985)1219K.HaradaandI.Tsutsui,Phys.Lett.B183(1987)311K.Harada,Nucl.Phys.B329(1990)723
H.O.GirottiandK.Rothe,J.Mod.Phys.A4(19)3041
A.M.PolyakovandP.B.Wiegman,Phys.Lett.131B(1983)121;141B(1984)223J.WessandB.Zumino.Phys.Lett.37B(1971)95;
6
[19][20]
[21][22][23][24][25][26]
[27][28][29]
E.Witten,Commun.Math.Phys.92(1984)455
E.Abdalla,M.C.B.Abdalla,L.SaltiniandA.Zadra,workinprogressC.G.CallanandJ.A.Harvey,Nucl.Phys.B250(1985)427-436
A.Capelli,C.A.TrugenbergerandG.R.Zemba,Nucl.Phys.B396(1993)465-490S.Fubini,Mod.Phys.Lett.A6(1991)347M.Stone,Int.J.Mod.Phys.B5(1991)509S.FubiniandC.A.L¨utken,Mod.Phys.Lett.A6(1991)487;
G.V.Dunne,A.LerdaandC.A.Trugenberger,Mod.Phys.Lett.A6(1991)2819;C.Cristofano,G.Maiella,R.MustoandF.Nicodemi,Phys.Lett.B262(1991)88;Mod.Phys.Lett.A6(1991)1779,2985
G.SotkovandM.Stanishkov,Off-criticalW∞andVirasoroalgebrasasdynamicalsymmetriesofintegrablemodels,NATOWorkshop,“IntegrableQuantumFieldThe-ories”,Como,Italy,1992
E.Abdalla,M.C.B.Abdalla,G.Sotkov,M.Stanishkov,Off-criticalcurrentalgebras,Int.J.Mod.Phys.A,toappear
B.BlokandX.G.Wen,Phys.Rev.B10(1991)8337;F.D.M.Haldane,Phys.Rev.Lett.51(1983)605
7
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo3.cn 版权所有 湘ICP备2023017654号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务