您好,欢迎来到华拓网。
搜索
您的当前位置:首页Field theory formulation of the Quantum Hall Effect

Field theory formulation of the Quantum Hall Effect

来源:华拓网
FieldtheoryformulationoftheQuantumHallEffect

E.Abdalla∗,M.C.B.Abdalla†

arXiv:cond-mat/9406119v1 30 Jun 1994CERN,TheoryDivision,CH-1211Gen`eve23,Switzerland

Abstract

WeconsiderthequantumHalleffectintermsofaneffectivefieldtheoryformulationofthe

edgestates,providinganaturalcommonframeworkforthefractionalandintegraleffects.

PACS:73.40.Hm,11.10.Kk,72.15.Nj,11.30.Rd

CERN-TH7344June94

cond-mat/9406119

TherehasbeenalotofinterestinthelastyearsontheQuantumHallEffect(QHE)1.Theintegraleffect(IQHE)hasbeengivensimpleexplanation2,butthefractionaleffect(FQHE)ismoreinvolvedandrequirestheconceptofcollectivebehavioroftheelectrons3.Inparticular,Jain4usedaunifiedschemeinordertoexplainbotheffects,sincetheex-planationoftheintegraleffectwasbelievedtobedescribedintermsofnon-interactingelectrons1,whilethefractionaleffectincludestheabovementionedcollectivephenomenon.Theideaistointroducecopiesoftheelectron,andconsidercondensationsofsuchfields4.Furtherunderstandingcanbeachievedonceoneverifiesthatchiralityplaysanessen-tialroleintheexplanationoftheHalleffect,asstressedrecently5,6,7,8.OurpurposehereistoprovideafieldtheoreticalapproachtothequantumHalleffect,insuchawaythatthecollectiveelectronphenomenonisnaturallyaccomodated,beingjustaconsequenceofthedescriptionofelectronssqueezedinasmallspaceregion,andthechiralnatureoftheinteraction5−8,leadingtochiralanomaly,whichtogetherwiththesolitonbehaviorinher-itedfromthecollectiveeffect,naturallyaccomodatesthefractionaleffect,andgives,asabyproduct,theintegraleffectasaparticularcase.Werefrainfromreviewingthesubject,referingtothevastliterature1,9.However,wehavetoexplicitlyquotesomeresultswhichwillbeusedinthefollowing,aswellasrefertoasacheckofthecorrectednessoftheprocedure.

WestartoutoftheLagrangeandensityoffour-dimensionalQED,whichreads

L=

ΨiΓµAµΨi

,

i=1,...,N

,

(1)

wherethegammamatricesΓµandtheΨfieldarefour-dimensionalandread

󰀉0−1

10󰀌

󰀉0−σa

σ0

a

Γ0=

,

Γa=

󰀌

,

󰀉󰀌χ

Ψ=

η

,(2)

σaaretheusualPaulimatriceswitha=1,2,3andχandηarebispinors.InthisnotationtheLagrangianis

L=χ+∂0χ+η+∂0η−η+σa∂aη−χ+σa∂aη+χ+χA0+η+ηA0−e(χ+σaχ+η+σaη)Aa==

η∂η+(ηγµη)Aµ+χ+σM∂Mχ+η+σM∂Mχ

ψIγµψIAµ+M−derivatives,I=1,2andM=2,3.

(3)

Intheabovewehaveusedthefollowingnotation:ThespinorfieldψI=1standsforχ,thefirstbispinor,whileψI=2correspondstoγ1η(t,−󰀮x),andthetwo-dimensionalgamma

32

matricesareγ0=σ,γ1=σ,andγ5=γ0γ1;theslashderivativeis∂=γµ∂µ.Therefore,forΓµtheindexµgoesfrom0to3,whileforγµittakesthevalues0,1.Weneglectthederivativesinthe2and3directions(M),consideringonlythetwo-dimensionalproblem.

1

IntegratingoverthegaugefieldAµ(µ=0,···,3)wegetL=

ψjγµψjDµν

ψjψjD33

ψjγ5ψjD22

ψji∂ψj+geff

󰀂

ψkγµψk+geff(

ψjγ5ψj)2

󰀄

,(5)

wheretheeffectivecurrentvertexcorrespondingtoµ=2intwodimensionsis

ψψ.WefindalsoatrivialThirringinteraction,whichisneglected

inthefollowing.Theelectromagneticfieldisresponsiblefortheinternalinteractionsinthecristal,andfortheformationofthetwo-dimensionallayer.Nowtheeffectivetwo-dimensionalinteractionisthechiralGross-Neveu(CGN)theory,whichhasbeenmuchstudiedintheliterature(see[10]andreferencestherein).Sincetheelectromagneticfieldhasbeenusedinordertoformthesystem,weshallforthetimebeingdisregarditsinteraction.Laterwehavetoreconsiderit,inordertoknowtheinteractionofthesamplewiththeexternalfieldsresponsablefortheHalleffect.AsfarastheCGNinteractionisconcerned,werecallthefollowingfacts.Thesolutionofsuchatheoryisgivenintermsof

ˆj,whichsatisfythenon-linearrelation10,11solitonsψ

󰀁j···ψ󰀁j󰀁+∼ǫjj···jψψ12N−112N−1j

,

(6)

whereontherighthandsideasuitableredefinitionoftheKlein10factorandthenormal

productprescriptionarerequired.

Suchsolitonsarechargelessfields,sincetheU(1)-chargehasbeenseparatedinorderthattheaboverelationbevalid.Infact,thegaugeinteractionhasbeenusedupinthequantumgaugedegreesoffreedom,inorderthatthetwo-dimensionalinfra-redbehaviordoesnotcauseproblems.AsshownbyWen12,theexcitationsresponsablefortheQHEcontainseveralbranches.Infact,theexcitationsineachbranchcarryafractionalcharge.SuchedgeexcitationsformtheFermiliquid.However,asstressedbyWen,thefermionsintheFermiliquidarenottheelectrons,butdescribetheedgeexcitation,apossibilityopenedbytheboson/fermiondualityintwodimensions.ThismeansthattheFermiliquidisbuiltofsolitons,describedbygeneralizedstatistics13,14.

Thenextproceduretobefollowedconcernstheinteractionofthesolitonswiththeexternalgaugefields.Thegaugeinteractionofthedegeneratesolitonsdisplayinganap-parentSU(2N−1)symmetry,withthegaugefieldisfundamentallyimportantinordertoexplaintheeffect.Thediscussionofgaugeinvarianceinthiscontextisgivenin[15].Fromthefactthatwehaveaboundstatestructure,orcollectiveapproachofthetypepicturedbyeq.(6),wecandescribethephysicalelectronfieldbythel.h.s.of(6)times

󰀁j),sinceitissuchfieldwhichhasphysicalinterpretation.ThistheU(1)factor(ψj=eiχψ

meansthatwecandistributethechargeequallyamongthesolitonfields,andtrytofindan

2

effectiveLagrangeanwhichdisplaysthedesiredfeaturesoftheHalleffect.Asapuretwo-dimensionaltheory,thechiralGrossNeveumodelpresentsfieldswithgeneralizedstatistics.Asafour-dimensionaltheoryweinterpreteitsmeaningasthefactthatonlyboundstatesoftheform(6)describethephysicalelectron.Therefore,wesupposethatthephysicalelectronisoftheaboveform,multipliedbytheconvenientexponentialrepresentingtheU(1)charge,thatis

󰀇ˆeψ

−iχ/n

󰀈+

=e

󰀇󰀈󰀇󰀈

−iχ/n−iχ/nˆjeˆjeǫjj1···jnψ···ψ1n

e

,(7)

andeachofthesolitonscarriesacharge

ψji∂ψj+eˆ

AµAµ+(ψ−selfinteractions)

,(8)

wherewefollowed[5,6]andintroducedtheinteractionoftheelectromagneticfieldwith

ψjγµ1−γ5thecurrentofdefinitechirality,thatis

17

,andaˆ=(2N−1)arepresentstheregularizationambiguity2N−1

(seebelow).IntheQHEchiralityplaysafundamentalrole.Itiswellknownthatchiralgaugeinteractionsareanomalous10,17,18,andtwo-dimensionalchiralQEDwithanomalousbreakdownofgaugeinvariance17admitsexactsolutionsinapositivemetricHilbertspacerespectingunitarity,providedtheparametera,definedabove(see[17])isrestrictedtoa≥1.Infact,theJR17termae2A2µtakesaccountoftheambiguityintheregularizationprocedureresultingfromthelackofgaugeinvariance.ItmayalsobeobtainedasthemasslesslimitoftheProcatheory10.

ThisisourproposalfortheeffectivefieldtheoryLagrangeantodescribetheQHE.ThereforewearriveatthechiralQED2interaction,togetherwithchiralGross-Neveutypeself-interactionfortheFermifields,aswellastheconstraint(6).SincetheessenceofthechiralGross-Neveuself-interactionistoimplytherelation(6)characteristicofthetwo-dimensionaltheory,whiletheHalleffectitselfdependsontherelationbetweenthecurrentandtheexternalgaugefield,wesimplifymatters,consideringchiralQED2asthemodelfortheQHE,togetherwithrelation(6).(Infact,inthepresenceofimpuritiesthefreeelectronpictureholdstrue13,14).

Aneffectivebosonictheoryisobtainedbymeansofthecomputationofthefermionicdeterminantintwodimensions,throughthePolyakov-Wiegmanformula19.Insuchacase,

3

integrationoverthefermionsleadstoanexternalgaugefielddependentpartitionfunctionoftheform10󰀋2a

ˆ2LidxˆeiW[A]

e=e

wheretheWZWfunctionalisgivenbytheexpression

Γ[h]=

1

i

󰀆

−1

󰀅µ)h,d2xAµh(∂µ−∂

(10b)

trǫµν

󰀆

1

dr

0

󰀆

−1−1−1

d2x󰀅h∂r󰀅h󰀅h∂µ󰀅h󰀅h∂ν󰀅h.(10c)

IntheabovewechoseA−=

2

󰀃eˆ

(∂µφj)2+

j

2

󰀃

j

(∂µφj)−

2

1

A

µ

󰀃

j

󰀅µ)φj+(∂µ−∂

aˆeˆ2

󰀃

i

ˆeˆ󰀅ν)φi+a(∂ν−∂

(13)

.

Considernowthe(classicallyconserved)currents

µ

=JL

󰀅µ)Aµ=0(∂µ−∂

.,

(14)

µ

=−(gµν+ǫµν)(∂νφi−eˆAν)JiR

µ

,asexpected,Inthequantumtheorywehaveconservationoftheright-movingcurrentJiR

µ

=0∂µJiR

,(15)

buttheleftcurrentisanomalous!Indeed,wehave

µ

∂µJL

=(2N−1)

eˆ2

2π(2N−

=

e2

1)2

󰀊󰀍

󰀅µAµ(a−1)∂µ+∂

,

,wereadtheHallconductivityfromtheanomaly

coefficient.Thefirstterm,namely(a−1)∂µAµisapuretwo-dimensionaleffect,anddoes

󰀮,B󰀮usualsystem.Therefore,thenotappeariftheexternalgaugefielddescribestheE

(minimal)Hallconductivityisgivenbythecoefficientoftheanomaly22,

σH=

e2

2ǫµνF

µν

2π5

eˆ2δijδ′(x−y),

(19)

whichshouldbecomparedto[12].Moreover,theW∞algebraobtainedforthenon-relativisticelectrongasdescription23canbeunderstoodasthealgebraofhigherspinchiralcurrentstudiedis[27]fortheabeliancase,andin[28]inthenon-abeliancase.Suchhigher-dimensionalalgebrasunderlinethemodelsconsidered21.

Althoughwedidnotdiscusstheissueofthehierarchyofthedifferentfillingfactors,itshouldbeclearatthispointthatoncewehavegotten(18),andconsequentlythesimplestfillingfactorν=1/3(forN=2),theargumentsusedin[29]nowapply.

ThisworkwaspartiallysupportedbyCAPES(E.A.),Brazil,undercontractNo.1526/93-4andbyCNPq(M.C.B.A.),Brazil,undercontractNo.204220/77-7.

References[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18]

R.E.PrangeandS.M.Girvin,ed.,TheQuantumHallEffect,Springer,Berlin,1990R.B.Laughlin,Phys.Rev.B23(1981)5632-5633R.B.Laughlin,Phys.Rev.Lett.50(1983)1395-1398

J.K.Jain,Phys.Rev.Lett.63(19)199;Phys.Rev.B40(19)8079

L.Chandar,FractionalQuantumHallEffectfromAnomaliesinWZNWModel,PreprintSU-4240-569,february,1994

A.P.Balachandran,L.ChandarandB.Sathhiapalan,DualityandtheFractionalQuantumHallEffect,PreprintSU-4240-578,May,1994M.Stone,Phys.Rev.B42(1990)8399-8404X-G.Wen,Phys.Rev.B41(1990)12838-12844

M.Stone,Ed.,QuantumHallEffect,WorldScientific,1992

E.Abdalla,M.C.B.AbdallaandK.Rothe,Non-perturbativeMethodsinTwo-dimen-sionalQuantumFieldTheory,WorldScientific,1991R.K¨oberle,V.Kurak,J.A.Swieca,Phys.Rev.D20(1979)7;ED20(1979)2638X-G.Wen,Phys.Rev.Lett.(1990)2206;NSF-ITP--157preprint,(unpub-lished)

F.Wilczek,Ed.,FractionalStatisticsandAnyonSupercondutivity,WorldScientific,1990

S.Forte,Rev.Mod.Phys.(1992)193

R.B.Laughlin,FractionalStatisticsandQHE,inFractionalStatisticsandAnyonSupercondutivity,Ed.,F.Wilczek,WorldScientific,1990R.Tao,Y.S.Wu,Phys.Rev.B30(1984)1097.

R.B.LaughlinPhys.Rev.Lett.50(1983)1395;W.P.SuandJ.R.SchriefferPhys.Rev.Lett.46(1981)738

R.JackiwandR.Rajaraman,Phys.Rev.Lett.(1985)1219K.HaradaandI.Tsutsui,Phys.Lett.B183(1987)311K.Harada,Nucl.Phys.B329(1990)723

H.O.GirottiandK.Rothe,J.Mod.Phys.A4(19)3041

A.M.PolyakovandP.B.Wiegman,Phys.Lett.131B(1983)121;141B(1984)223J.WessandB.Zumino.Phys.Lett.37B(1971)95;

6

[19][20]

[21][22][23][24][25][26]

[27][28][29]

E.Witten,Commun.Math.Phys.92(1984)455

E.Abdalla,M.C.B.Abdalla,L.SaltiniandA.Zadra,workinprogressC.G.CallanandJ.A.Harvey,Nucl.Phys.B250(1985)427-436

A.Capelli,C.A.TrugenbergerandG.R.Zemba,Nucl.Phys.B396(1993)465-490S.Fubini,Mod.Phys.Lett.A6(1991)347M.Stone,Int.J.Mod.Phys.B5(1991)509S.FubiniandC.A.L¨utken,Mod.Phys.Lett.A6(1991)487;

G.V.Dunne,A.LerdaandC.A.Trugenberger,Mod.Phys.Lett.A6(1991)2819;C.Cristofano,G.Maiella,R.MustoandF.Nicodemi,Phys.Lett.B262(1991)88;Mod.Phys.Lett.A6(1991)1779,2985

G.SotkovandM.Stanishkov,Off-criticalW∞andVirasoroalgebrasasdynamicalsymmetriesofintegrablemodels,NATOWorkshop,“IntegrableQuantumFieldThe-ories”,Como,Italy,1992

E.Abdalla,M.C.B.Abdalla,G.Sotkov,M.Stanishkov,Off-criticalcurrentalgebras,Int.J.Mod.Phys.A,toappear

B.BlokandX.G.Wen,Phys.Rev.B10(1991)8337;F.D.M.Haldane,Phys.Rev.Lett.51(1983)605

7

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo3.cn 版权所有 湘ICP备2023017654号-3

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务