谐波危害和治理措施
1.对电费计量系统的危害:
由于谐波电流的波形不同于基波电流,当系统谐波电流含量较高时,会严重影响电费计量系统,计量系统若不能区分谐波电流与基波电流,将谐波电流计为有功电流,造成用户多支出电费。
2.计算机和一些其它电子设备:
如PLC等,对电能质量要求较高,较高的谐波可导致控制设备误动作,进而造成生产或运行中断,导致较大的经济损失。 3.变压器:
对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。须注意的是; 这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因子,以确保变压器温升在允许的范围内。还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(仟瓦一小时)反应在电费上,而且谐波也会导致变压器噪声增加。 4. 电力电缆:
在导体中非正弦波电流所产生的热量与俱有相同均方根值的纯正弦波电流相较,则非正弦波会有较高的热量。该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。这两种效应如同增加导体交流电阻,进而导致I2Rac损耗增加。 5. 电动机与发电机:
谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。这些额外损失将导致电动机效率降低,并影响转矩。当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振动。机械振动是由振动的扭矩引起的,而扭矩的振动则是由谐波电流和基波频率磁场所造成,如果机械谐振频率与电气励磁频率重合,会发生共振进而产生很高的机械应力,导致机械损坏的危险。
6. 电子设备:
电力电子设备对供电电压的谐波畸变很敏感,这种设备常常须靠电压波形的过零点或其它电压波形取得同步运行。电压谐波畸变可导致电压过零点漂移或改变一个相间电压高于另一个相间电压的位置点。这两点对于不同类型的电力电子电路控制是至关重要的。控制系统对这两点(电压过零点与电压位置点)的判断错误可导致控制系统失控。而电力与通讯线路之间的感性或容性耦合亦可能造成对通讯设备的干扰。 7. 开关和继电保护:
像其它设备一样,谐波电流也会引起开关之额外损失,并提高温升使基波电流承载能力降低。温升的提高对某些绝缘组件而言会降低其使用寿命。旧式低压断路器之固态跳脱装置,系根据电流峰值来动作,而此种型式之跳脱装置会因馈线供电给非线性负载而导致不正常跳闸。新型跳脱装置则根据电流的有效值(RMS)而动作。
保护继电器对波形畸变之响应很大程度取决于所采用的检测方法。目前并没有通用的准则能用来描述谐波对各种继电器的影响。然而,目前在电网上一般的谐波有可能对由负序滤过器组成启动元件的保护及自动装置产生干扰,容易引起误动。 8. 功率因数补偿电容器:
电容器与其它设备相较有很大区别,因其容性特点在系统共振情况下可显著的改变系统阻抗。电容器组之容抗随频率升高而降低,因此,电容器组起到吸收高次谐波电流的作用,此作用提高温升并增加绝缘材料的介质应力。频繁地切换非线性电磁组件会产生谐波电流如变压器,这些谐波电流将增加电容器的负担。应当注意的是熔丝通常不是用来当作电容器之过载保护。由谐波引起的发热和电压增加意味着电容器使用寿命的缩短。 在电力系统中使用电容器组时,必需考量因素是系统产生谐振的可能性。系统谐振将导致谐波电压和电流会明显地高于在无谐振情况下出现的谐波电压和电流。 附件2. 滤波技术
随着许多电力电子产品在电力系统中的使用,谐波污染已成为现代配电系统中一个相当普遍的问题。治理谐波污染的有效途径是:对于某配电系统,应根据所供含有谐波源的负荷容量、台数、性质等进行必要的谐波计算,如某次(某几次)谐波含量超过国家标准允许值,即应采取有效的治理措施;对于已运行的配电系统,如新增加了某些谐波源负荷,特别是出现了电容器异常损坏、变压器异常发热、电子信息系统误动作等现象,
就很可能是谐波污染所引起,解决办法是用符合标准要求的谐波测量仪器,进行实际测量,找出本系统中各次谐波(电流和电压)的具体含量,如超过国家标准允许值(有时是接近国家标准允许值),就应采取治理措施。我国现行有效抑制谐波的设备,主要是非调谐式无源滤波器、组合滤波器和有源滤波器,前者用于针对系统中最低次谐波,目的是保证补偿、抑制谐振,缺点是滤波效果较差,一般港口变电站配电系统因直流调速装置产生以5次为主的谐波,采用非调谐式滤波补偿后,其电能质量参数可以达到国标要求;后二者用于系统中可能有几种谐波次数超标或谐波次数可能发生变化的情况,有源滤波器可实现动态跟踪补偿,滤波效果最佳,用于对电能质量要求很高的场所,但此设备价格较昂贵。这是目前电力系统使用最广泛的抑制谐波方法。主要方法有以下几种: 无源滤波器
无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,无源滤波是目前采用的抑制谐波及无功补偿的主要手段。 有源滤波器
早在70年代初期,日本学者就提出了有源滤波器APF(Active Power Filter)的概念,即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。与无源滤波器相比,APF具有高度可控性和快速响应性,能补偿各次谐波,可抑制闪变、补偿无功,有一机多能的特点;在性价比上较为合理;滤波特性不受系统阻抗的影响,可消除与系统阻抗发生谐振的危险;具有自适应功能,可自动跟踪补偿变化着的谐波。目前在国外高低压有源滤波技术已应用到实践,而我国还仅应用到低压有源滤波技术。随着容量的不断提高,有源滤波技术作为改善电能质量的关键技术,其应用范围也将从补偿用户自身的谐波向改善整个电力系统的电能质量的方向发展。
因篇幅问题不能全部显示,请点此查看更多更全内容