您好,欢迎来到华拓网。
搜索
您的当前位置:首页正文

一种PID抗性高的PERC电池组件及其制备方法[发明专利]

来源:华拓网
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110491952 A(43)申请公布日 2019.11.22

(21)申请号 201910811785.3(22)申请日 2019.08.29

(71)申请人 通威太阳能(眉山)有限公司

地址 620000 四川省眉山市东坡区修文镇

进修路8号附1号

申请人 通威太阳能(成都)有限公司(72)发明人 王岚 李忠涌 张忠文 谢毅 (74)专利代理机构 成都弘毅天承知识产权代理

有限公司 51230

代理人 谢建(51)Int.Cl.

H01L 31/0216(2014.01)H01L 31/068(2012.01)H01L 31/18(2006.01)

权利要求书1页 说明书5页 附图1页

CN 110491952 A(54)发明名称

一种PID抗性高的PERC电池组件及其制备方法

(57)摘要

本发明公开了一种PID抗性高的PERC电池组件及其制备方法,涉及太阳能电池技术领域,本发明包括衬底层,衬底层顶面从下到上依次设置有扩散层、SiOx正钝化层和SixNy正减反钝化保护膜层,衬底层底面从上到下依次设置有SiOx背钝化层、AlOx背钝化膜层和SixNy背减反钝化保护膜层,其特征在于,SixNy正减反钝化保护膜层的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层的厚度为90-160nm,SixNy背减反钝化保护膜层的膜层数量为至少2层,且距离衬底层最近一层的折射率≥2.1,AlOx背钝化膜层的厚度为2-28nm,AlOx背钝化膜层的折射率为1.56-1.76,本发明通过优化电池组件排布及各层组件厚度和折射率,优化制备工艺,制得的电池抗PID性能高。

CN 110491952 A

权 利 要 求 书

1/1页

1.一种PID抗性高的PERC电池组件,包括衬底层(1),其特征在于,衬底层(1)顶面从下到上依次设置有扩散层(2)、SiOx正钝化层(3)和SixNy正减反钝化保护膜层(4),衬底层(1)底面从上到下依次设置有SiOx背钝化层(6)、AlOx背钝化膜层(7)和SixNy背减反钝化保护膜层(8),SixNy正减反钝化保护膜层(4)的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层(8)的厚度为90-160nm,SixNy背减反钝化保护膜层(8)的膜层数量为至少2层,且距离衬底层(1)最近一层的折射率≥2.1,AIOx背钝化膜层(7)的厚度为2-28nm,AIOx背钝化膜层(7)的折射率为1.56-1.76。

2.根据权利要求1所述的一种PID抗性高的PERC电池组件,其特征在于,SixNy背减反钝化保护膜层(8)的厚度为100nm。

3.根据权利要求1所述的一种PID抗性高的PERC电池组件,其特征在于,SixNy背减反钝化保护膜层(8)的膜层数量为5层。

4.根据权利要求1至3中任一权利要求所述的一种PID抗性高的PERC电池组件,其特征在于,SixNy正减反钝化保护膜层(4)上表面设置有正电极(5),SixNy背减反钝化保护膜层(8)下表面设置有背电场(9),背电场(9)底部设置有背电极(10)。

5.根据权利要求4所述的一种PID抗性高的PERC电池组件,其特征在于,背电场(9)的厚度为5-30μm。

6.根据权利要求5所述的一种PID抗性高的PERC电池组件的制备方法,其特征在于,包括以下步骤:

S1:根据管式PECVD工艺,在衬底层(1)顶面依次制备扩散层(2)和SiOx正钝化层(3),在衬底层(1)底面制备SiOx背钝化层(6);

S2:然后在SiOx背钝化层(6)底面通过ALD工艺沉积形成AlOx背钝化膜层(7),沉积的圈数为24-36圈;

S3:然后在SiOx正钝化层(3)顶面镀膜形成SixNy正减反钝化保护膜层(4),并进行退火,退火时间为17-44min,退火温度在380-480℃;

S4:然后在AIOx背钝化膜层(7)底面镀膜形成SixNy背减反钝化保护膜层(8),并进行退火,退火时间为17-44min,退火温度在380-480℃。

7.根据权利要求6所述的一种PID抗性高的PERC电池组件的制备方法,其特征在于,还包括以下步骤:

S01:在SixNy背减反钝化保护膜层(8)底面通过532nm-1064nm的激光进行局部开槽,局部开槽区域占比0.5%-6%;

S02:在SixNy背减反钝化保护膜层(8)底面通过丝网印刷得到背电场(9);S03:在对应局部开槽镂空区域,并在非背电场(9)区域进行丝网印刷银浆料并烘干,形成背电极(10);

S04:在SixNy正减反钝化保护膜层(4)顶面进行丝网印刷正电极(5)并烘干烧结。

2

CN 110491952 A

说 明 书

一种PID抗性高的PERC电池组件及其制备方法

1/5页

技术领域

[0001]本发明涉及太阳能电池技术领域,更具体的是涉及一种PID抗性高的PERC电池组件及其制备方法。

背景技术

[0002]近年来,PID效应引发的光伏电池可靠性问题越来越受重视,PID效应(Potential Induced Degradation),即电势差引起的组件功率衰减,又叫电位诱导衰减。PID现象产生的机理为:水汽通过封边的硅胶或背板进入组件内部,或组件在长时间的高温高湿环境下,组件EVA中酯酸键产生分解,产生可以自由移动的醋酸根阴离子,醋酸根阴离子和玻璃中的纯碱(Na2CO3)反应将Na+析出,在电池内部电场作用下,Na+通过SiNx层漂移至硅基体,破坏PN结,最终导致组件端功率出现较大程度的衰减。[0003]随着PID问题的增加,目前解决PERC电池PID效应的方案是采用高折射率的钝化减反膜,如专利申请号为“CN201310008588.0”公开的“能抗PID效应的太阳电池钝化减反膜”,其有两种结构,第一种:该钝化减反膜的底层为钝化减反层SiNx,折射率为2.0-2.1,厚度为70-80nm;该钝化减反膜的顶层为导电层非晶硅层,厚度为3-10nm。第二种:该钝化减反膜的底层为钝化层SiNx,折射率为2.2-2.3,厚度为9-11nm;b、该钝化减反膜的中间层为导电层非晶硅层,厚度为3-10nm;该钝化减反膜的顶层为减反层SiNx层,折射率为2.0-2.1,厚度为60-70nm。而造成PID效应的原因主要在于:(1)衬底材料电阻率及掺杂;(2)膜层工艺;(3)组件封装材料;(4)组件阵列排布;(5)组件工作环境;(6)逆变器的类型和接地方式。由上述PID失效的主要因素分析可以得出,PID失效并不能单纯依靠钝化减反膜成分和厚度的改变,其PID失效的优化需要依赖于综合性的工艺改进、材料优化、组件排布和结构改进等。[0004]故如何解决上述技术问题,对于本领域技术人员来说很有现实意义。发明内容

[0005]本发明的目的在于:为了解决现有PERC电池单纯依靠钝化减反膜成分和厚度的改变来解决PID效应,电池抗PID失效的性能较差的技术问题,本发明提供一种PID抗性高的PERC电池组件及其制备方法。

[0006]本发明为了实现上述目的具体采用以下技术方案:[0007]一种PID抗性高的PERC电池组件,包括衬底层,衬底层顶面从下到上依次设置有扩散层、SiOx正钝化层和SixNy正减反钝化保护膜层,衬底层底面从上到下依次设置有SiOx背钝化层、AlOx背钝化膜层和SixNy背减反钝化保护膜层,SixNy正减反钝化保护膜层的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层的厚度为90-160nm,SixNy背减反钝化保护膜层的膜层数量为至少2层,且距离衬底层最近一层的折射率≥2.1,AlOx背钝化膜层的厚度为2-28nm,AlOx背钝化膜层的折射率为1.56-1.76。[0008]进一步地,SixNy背减反钝化保护膜层的厚度为100nm。[0009]进一步地,SixNy背减反钝化保护膜层的膜层数量为5层。

3

CN 110491952 A[0010]

说 明 书

2/5页

进一步地,SixNy正减反钝化保护膜层上表面设置有正电极,SixNy背减反钝化保

护膜层下表面设置有背电场,背电场底部设置有背电极。[0011]进一步地,背电场的厚度为5-30μm。

[0012]一种PID抗性高的PERC电池组件的制备方法,包括以下步骤:[0013]S1:根据管式PECVD工艺,在衬底层顶面依次制备扩散层和SiOx正钝化层,在衬底层底面制备SiOx背钝化层;[0014]S2:然后在SiOx背钝化层底面通过ALD工艺沉积形成AlOx背钝化膜层,沉积的圈数为24-36圈;[0015]S3:然后在SiOx正钝化层顶面镀膜形成SixNy正减反钝化保护膜层,并进行退火,退火时间为17-44min,退火温度在380-480℃;[0016]S4:然后在AlOx背钝化膜层底面镀膜形成SixNy背减反钝化保护膜层,并进行退火,退火时间为17-44min,退火温度在380-480℃。[0017]进一步地,还包括以下步骤:[0018]S01:在SixNy背减反钝化保护膜层底面通过532nm-1064nm的激光进行局部开槽,局部开槽区域占比0.5%-6%;[0019]S02:在SixNy背减反钝化保护膜层底面通过丝网印刷得到背电场;[0020]S03:在对应局部开槽镂空区域,并在非背电场区域进行丝网印刷银浆料并烘干,形成背电极;[0021]S04:在SixNy正减反钝化保护膜层顶面进行丝网印刷正电极并烘干烧结。[0022]本发明的有益效果如下:[0023]1、本发明优化了PERC电池组件关键部件排布组合,且优化了各层厚度及折射率,优化SixNy正减反钝化保护膜层的厚度,确保对SiOx正钝化层的保护,同时优化AlOx背钝化膜层和SixNy背减反钝化保护膜层的厚度,提高折叠率,形成高致密膜层,同时SixNy背减反钝化保护膜层的膜层数量为至少2层,增强各层膜之间致密性和最终厚度,更好的保护AlOx背钝化膜层,增强AlOx背钝化膜层的稳定性,从而综合各方面来提高PERC电池的抗PID能力。

[0024]2、本发明制备方法通过优化AlOx背钝化膜层沉积圈数,可提高PERC电池PID抗性,同时严格控制镀膜顺序,依次按照AlOx背钝化膜层、SixNy正减反钝化保护膜层和SixNy背减反钝化保护膜层的顺序镀膜,增加了SixNy背减反钝化保护膜层的致密性,并严格控制退火时间和温度,综合提高PERC电池的抗PID能力。附图说明

[0025]图1是本发明一种PID抗性高的PERC电池组件的结构示意图;[0026]图2是本发明中的AlOx背钝化膜层沉积圈数对PID的影响效果图。[0027]附图标记:1-衬底层,2-扩散层,3-SiOx正钝化层,4-SixNy正减反钝化保护膜层,5-正电极,6-SiOx背钝化层,7-AlOx背钝化膜层,8-SixNy背减反钝化保护膜层,9-背电场,10-背电极。

4

CN 110491952 A

说 明 书

3/5页

具体实施方式

[0028]为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

[0029]在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。[0030]以下结合实施例对本发明的特征和性能作进一步的详细描述。[0031]实施例1

[0032]如图1所示,本实施例提供一种PID抗性高的PERC电池组件及其制备方法,包括衬底层1,衬底层1顶面从下到上依次设置有扩散层2、SiOx正钝化层3和SixNy正减反钝化保护膜层4,衬底层1底面从上到下依次设置有SiOx背钝化层6、AlOx背钝化膜层7和SixNy背减反钝化保护膜层8,SixNy正减反钝化保护膜层4的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层8的厚度为90-160nm,SixNy背减反钝化保护膜层8的膜层数量为至少2层,且距离衬底层1最近一层的折射率≥2.1,AlOx背钝化膜层7的厚度为2-28nm,AlOx背钝化膜层7的折射率为1.56-1.76。[0033]本实施例中,通过优化SixNy正减反钝化保护膜层的厚度,确保对SiOx正钝化层的保护,同时优化AlOx背钝化膜层和SixNy背减反钝化保护膜层的厚度,提高折叠率,形成高致密膜层,同时SixNy背减反钝化保护膜层的膜层数量为至少2层,增强各层膜之间致密性和最终厚度,更好的保护AlOx背钝化膜层,增强AlOx背钝化膜层的稳定性,并优化各膜层组合排布及折射率,从而综合提高PERC电池组件的抗PID能力。

[0034]下表1为SixNy背减反钝化保护膜层厚度对PID影响的实验测试结果表:[0035]表1

[0036]

由上表1可知,SixNy背减反钝化保护膜层厚度为100nm时对PID抗性最好,因此作

为本发明的一种优选技术方案:

[0038]SixNy背减反钝化保护膜层8的厚度为100nm。

[0039]下表2为SixNy背减反钝化保护膜层的膜层数量对PID影响的实验测试结果表:[0040]表2

[0037]

5

CN 110491952 A[0041]

说 明 书

4/5页

由上表2可知,随着SixNy背减反钝化保护膜层的膜层数量的增加,其PID抗性能力

增强,但受其厚度限制,膜层数量不宜过多,因此作为本发明的一种优选技术方案:[0043]SixNy背减反钝化保护膜层8的膜层数量为5层。[0044]作为本发明的一种优选技术方案:

[0045]SixNy正减反钝化保护膜层4上表面设置有正电极5,SixNy背减反钝化保护膜层8下表面设置有背电场9,背电场9底部设置有背电极10,背电场9的厚度为5-30μm。[0046]实施例2

[0047]如图1到2所示,本实施例提供一种PID抗性高的PERC电池组件的制备方法,包括以下步骤:[0048]S1:根据管式PECVD工艺,在衬底层1顶面依次制备扩散层2和SiOx正钝化层3,在衬底层1底面制备SiOx背钝化层6;[0049]S2:然后在SiOx背钝化层6底面通过ALD工艺沉积形成AlOx背钝化层7,沉积的圈数为24-36圈;[0050]S3:然后在SiOx正钝化层3顶面镀膜形成SixNy正减反钝化保护膜层4,并进行退火,退火时间为17-44min,退火温度在380-480℃;[0051]S4:然后在AlOx背钝化层7底面镀膜形成SixNy背减反钝化保护膜层8,并进行退火,退火时间为17-44min,退火温度在380-480℃。[0052]进一步地,还包括以下步骤:[0053]S01:在SixNy背减反钝化保护膜层8底面通过532nm-1064nm的激光进行局部开槽,局部开槽区域占比0.5%-6%;[0054]S02:在SixNy背减反钝化保护膜层8底面通过丝网印刷得到背电场9;[0055]S03:在对应局部开槽镂空区域,并在非背电场9区域进行丝网印刷银浆料并烘干,形成背电极10;[0056]S04:在SixNy正减反钝化保护膜层4顶面进行丝网印刷正电极5并烘干烧结。[0057]本实施例中,所述的PECVD工艺流程包括清洗制绒衬底层表面、扩散形成掺杂扩散层、刻蚀抛光、表面氧化、背面ALD钝化、PECVD镀膜并退火、激光刻槽、丝网印刷和烧结,而管式PECVD工艺区别于板式PECVD工艺,镀膜过程中,硅片竖直插入石墨舟中吸附,由SiC桨送入石英炉管内作为一电极端进行镀膜,因此称为管式PECVD。本发明制备方法通过优化AlOx背钝化膜层沉积圈数,可提高PERC电池PID抗性,同时严格控制镀膜顺序,依次按照AlOx背钝化膜层、SixNy正减反钝化保护膜层和SixNy背减反钝化保护膜层的顺序镀膜,增加了SixNy背减反钝化保护膜层的致密性,并严格控制退火时间和温度,综合提高PERC电池的抗

6

[0042]

CN 110491952 A

说 明 书

5/5页

PID能力。

[0058]图2为AlOx背钝化膜层沉积圈数对PID的影响效果图,从图2可看出,取六组PERC电池,其AlOx背钝化膜沉积圈数分别为24、26、28、30、32和36圈,并分别测试对PID的影响,测试条件为:在温度85℃、湿度85%以及-1000V的条件下持续96h,结合现行控制的圈数,以及可靠性结果,AlOx背钝化膜的圈数为26时的抗PID效果最好,作为本发明的一种优选技术方案:

[0059]在步骤S2中,AlOx背钝化层7沉积的圈数为26圈。[0060]下表3为退火时间对PID影响的实验测试结果表:[0061]表3

[0062]

由上表3可以得出,随着退火时间的延长,电池PID性能得以提升,氧浓度N2:02为

(500-1500):2000,退火降温回压N2:02为2000:2000,氧浓度比例提高,反应更加致密,对PID抗性更佳。

[0064]以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

[0063]

7

CN 110491952 A

说 明 书 附 图

1/1页

图1

图2

8

因篇幅问题不能全部显示,请点此查看更多更全内容