事在人为,而方案规划也需先行。针对我们给自己制定的目标,我们可以对行动的具体方案进行一个撰写,方案可以让我我们清楚的知道具体实施步骤,写好方案应当从哪方面入手?请您阅读小编辑为您编辑整理的《[教案参考] 《小数的近似数》教学反思其二》,欢迎阅读,希望您能够喜欢并分享!
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在菜市场买菜时,总价是8.53元,而售货员只收8元5角钱,这就是在求8.53这个小数的近似数。在创设情境环节,也结合生活实际,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,让学生感受数学与实际的联系。这样很自然地引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,再出题让学生说出把7.85元精确到元、精确到角分别是多少钱,这样把学习求一个小数的近似数的知识还原与生活,应用与生活。在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.664≈0.66后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.974≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
03kkk.cOm精选阅读
[荐]求一个小数的近似数教学反思集锦280字
面对日常的各种难以预料的情况,我们偶尔会需要用到一些必要的方案,方案范文的作用也不可小觑,自己的方案如何写呢?下面是小编为大家整理的“[荐]求一个小数的近似数教学反思集锦280字”,欢迎阅读,希望您能阅读并收藏。
求一个小数的近似数教学反思【篇一】
教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。
课堂上,将1.666……怎样表示更恰当。学生呈现了2元,1.7元,因为在之前的练习中我们已经接触了给物体正确标价.当学生提出这样的观点的时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数.故,马上有学生想到改为1.70元.我顺势板书1.70元.看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1.70怎么来的?”我们继续倾听学生自己的理解.在表达的过程,学生自己也 意识到了错误所在,同学们也明白了错误根源.此时我提出,“以元为单位,小数部分保留了几位?”“省略的是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。
掌握了保留方法之后,再引导学生区分在求近似数时1.0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。
最后讨论取值范围。
整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。
求一个小数的近似数教学反思【篇二】
本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方 法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义; 表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似 数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环 节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百 分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学 生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没 有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让 学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模 式,这样就有了更加清晰的思维。
求一个小数的近似数教学反思【篇三】
《义务教程标准》指出:学生的数学学习应当是现实的、有意义的、富有挑战性的,学习内容要有利于学生主动进行观察、实验、猜测、验证、推理与交流等数学活动。可见,学生低层次的模仿是不易建立起解决问题的数学模型的,更难以品味出数学思考的韵味和乐趣。因此,本节课在对近似数的教学上,通过实例直接告诉学生什么近似数的含义,让学生知道近似数的和精确数的区别,通过练习找近似数、找生活中运用近似数的例子,进一步加深对近似数的理解。
在学习用四舍五入法求近似数时,没有直接告诉学生什么是四舍五入法,怎样采用四舍五入法,而是给出学习的素材,让学生有足够的空间自己质疑,引发学生的探究心理,在足够的空间和时间范围内,小组学习合作,通过观察,交流讨论、比较探究得出四舍五入的方法,建立了解决此类问题的数学模型。
学生学得积极主动,兴趣盎然,教师以组织者、引导者的身份参与其中,师生共同分享学习的成功和喜悦。
求一个小数的近似数教学反思【篇四】
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思《近似数》是义务教育课程标准实验教科书数学二年级下册第77页的内容,学生在学校本内容之前,已经学校过简单数的估数,以及100以内加减法的估算,学生基本能理解大约、左右、大概等词的意思,并且已经学习了万以内数的读写法,数的组成。这些知识构成了本节课的学习基础。
我的教学处理是这样的:首先提示我口袋上的钱大约是100元、我们学校学生总数约是310人,让学生猜钱的数量和学生的总数,在猜出结果基础上,告诉学生像102元、313人这些数,它们准确地反映了事物的真实情况,可以把它们叫准确数,而100、310接近真实情况的数,称为近似数。再让学生思考,我们生活中,你还遇到哪些数,它们是准确数,还是近似数?在学生说一些准确数和近似数之后。让生思考近似数有什么特点,又有什么作用?
课堂设计的板书如下:
近似数
准确数: 近似数:
102元100元
313人310人
41人 40人
9992人 10000人
近似数接近准确数,近似数一般是整十、
整百、整千、整万的数,所以较容易记忆。
在练习过程中,我发现学生存在几个问题:
1、学生没有真真切切地体会到近似数的特点与作用。比如说对于603米,有的学生的答案是约为601、602米。
您现在正在阅读的小学数学《近似数》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《近似数》教学反思2、学生没有很好地理解近似数可以有多个。
3、学生没有能正确地进行估数,比如练习洗衣机售价为1198元,约是多少元?这题,很多学生就回答约是20xx元。
4、对于较大的数,学生比较难理解接近的程度,比如说:9019人,学生一般估成3020人,或9010人;学生根本没有想到9000人。教师讲解后,我模糊地听到有学生说9000与9019相差了19,不能算接近了吧
为什么会出现如此多的问题呢?回顾我的教学过程,我发现对于近似数的特点,教授得并不透彻,而且好像没有正式地提到近似数可以有多个。所以如果上课时,我有意识地注意到这些细节,也许就可以避免出现第一和第二个问题。
第三和第四个问题出现的原因,我觉得可能是一样的,那就是学生还没有体验到较大的数在生活中的应用、无法准确地把握大数之间差距的程度究竟有多大,如:学生可能知道9019与9000相差19,却无法体会到19对于这两个数而言,这个差距是很小的。
如果重新教授本课,我该如何处理,才能很好地解决这些问题呢?也许通过学生交流、讨论,教师小结,可以很好地解决第一和第二个问题;而第三个问题,可以通过一百一百地从1200数到20xx,发现之间的差距有800之多,并顺势提醒,近似数跟准确数是接近的。但第四个问题,目前,我真想不出很好的办法来解决。
记得吴正宪老师教授三年级《估算》一课,吴老师的课堂设计很好地贴切了生活的需要,如生活中什么时候需要估数、估算?什么时候需要估大,什么时候需要估小等等。在吴老师的精心设计下,学生的学习效果是很好的。《近似数》一课的设计,是否也应该体现从生活中来,到生活中去的原则呢?设计的教学内容与环节,应该贴切生活中的需要呢?从而让学生在将知识应用于生活问题过程中,很好地理解数差距的程度是大,还是小呢?
路漫漫其修远兮,吾将上下而求索。
求一个小数的近似数教学反思(篇五)
数学源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先教师出示例7 :爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算.当学生除到商为两位小数时,还除不尽。教师巡视中发现,有的学生一直往下除根本没有停下来的意思。这时教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。
本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习. 但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的步骤. 所以在设计巩固练习时应增加小数除以小数的练习.
其次我根据学情补充介绍了一种求商近似数的简便方法. 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
其实在上课的时候,不能因为需要保留两位小数或保留一位小数而强调学生说只能除到小数部分的第三位或第二位,遇到学生除到了比实际需要更多的数位,应加以鼓励表扬,并及时提示学生根据实际需要去除,决不能“一味扼杀,一棒子打死”。这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要作为教师的我们要培养有创新精神的学生。新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。
小数近似数的教案锦集七篇
编辑精心挑选了一篇关于“小数近似数的教案”的文章,希望能够给大家带来帮助。作为一名负责任的教师,在上课前准备教案和课件是必要的,而现在是写课件的时候了。我们要知道,学生在课堂上的反应也会在教案和课件中得以呈现。为了方便日后的查看,建议您将本文收藏起来哦!
小数近似数的教案【篇1】
【教学目标】
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
【教学重点】
使学生掌握求一个小数的近似数的方法。
【教学难点】
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
【教具】
多媒体课件
【教学过程】:
一、课前预习
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、展示交流
(一)创设情境,引入新知
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(二)求小数的近似数的方法
1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求0。984的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第74页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
三、检测反馈
1、教材第74页上、下的“做一做”。
2、教材第75页练习十二第一、2题。第3、4题
四、板书设计教
求一个数的近似数
四舍五入
法
保留两位小数0.984≈0.98 142800千米=14.28万千米
保留一位小数0.984≈1.0 778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.984≈1
注意:在表示近似数时,小数末尾的0不能去掉
教学反思:
现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。
小数近似数的教案【篇2】
教学目标:
1、使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
2、使学生理解保留小数位数越多,精确程度越高。
3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点:
用四舍五入法求小数的近似数。
教学难点:
明白要保留的小数数位里末尾的“0”不能去掉的原因。
教学用具:课件
教学过程:
一、复习铺垫:
(1)把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)
3650≈()119360≈()24800≈()270900≈()
(2)下面的□里可以填上哪些数字?
32□645≈32万47□05≈47万
学生填完后,说一说是怎么想的。(回忆四舍五入法)
(3)整数可以用四舍五入法来求近似数,怎样求小数的近似数呢?也就是用“四舍五入”的方法保留一定的小数位。下面我们就用四舍五入法来求小数的近似数。[板书课题:求一个小数的近似数])
二、探究新知
(一)、出示例题:
例1、李明在运动会中的跳远成绩是2。953米,你知道他跳远成绩的近似数是多少吗?(要求:保留整数保留一位小数保留两位小数)
师:保留是什么意思?说说你对这个词的理解
让学生进行独立思考,发表意见,说出结果及想法。
1保留整数
根据提示思考:
一找(),二看(),三()
学生独立探索,小组交流,反馈后总结:一找个位,二看十分位,三五入、(板书:2.953≈2.95)
师讲解:保留整数,表示精确到个位。
(3)练习:0.999你会保留整数吗?
2、保留一位小数(根据提示思考)
(1)小组合作学习。
(2)组内交流,组长汇报交流结果。自己总结:(一找十分位,二看百分位,三入。)(板书:2.953≈3.0)
(3)师:近似数3.0末尾的0能不能去掉,为什么?(独立思考指名发表意见)
①教师出示线路图:(课件出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间、保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些、也就是小数保留的位数越多,精确的程度越高
问:刚才我们已知道“保留整数,表示精确到个位。”那么保留一位小数,表示精确到哪一位呢?
③练习:0.999你会保留一位小数吗?
3保留两位小数
小数近似数的教案【篇3】
教学目标:
1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。
教学重点:掌握用“四舍五入法”求一个小数的近似数。
教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。
教学过程:
一、复习旧知,情境导入。
1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!
2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。
先写黑板:12953≈1万
3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)
师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。
师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)
4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?
学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!
二、整合情景,探究交流。
1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)
这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?
保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。
谁再来说一遍?(2-3名同学。表扬。)
2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?
(保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。
3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。
4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)
5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)
不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。
求得的近似数1.0和1比较,哪一个更精确一些,为什么?
幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。
三、练习。(智力闯关。)
同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。
1.第一关。保留一位小数。
0.58≈0.63.788≈3.8
精确到百分位。精确到百分位就是保留几位小数?
12.004≈12.001.987≈1.99
保留整数。
9.956≈109.0448≈9
2.第二关。在□里填数。
2.9□≈2.98.5□7≈8.56
3.第三关。
姚明的身高约为2.2米,姚明的身高可能是多少米?
2.15(6、7、8、9)2.155……
2.20(1、2、3、4)2.……
四、全课。
你今天有哪些收获?保留一位小数,就是精确到十分位,……
板书设计
求小数的近似数
12953≈1万0.984≈0.98保留两位小数,看千分位。
小于5,舍去。小于5,舍去
0.984≈1.0保留一位小数,看百分位。
0.984≈1保留整数,看十分位。
大于5,向前一位进1。
小数近似数的教案【篇4】
教学内容:教材第126~127页例1、练一练,练习二十六第1~5题。
教学目标:
1.使学生能根据要求正确地运用四舍五入法求一个小数的近似数。
2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的0不能去掉。
3.进一步培养学生运用旧知和类比推理的能力。
教学重点:求一个小数的近似数。
教学难点:使学生能够区别求近似数与改写求准确数的方法。
教具准备:小黑板,投影。
教学步骤
(一)铺垫孕伏
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
9865345874131200
5004739801014870
2.下面的□里可以填上哪些数字?
32□64532万47□0547万
学生填完后,说一说是怎么想的.
(二)探究新知
1.导入新课:
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用四舍五入法保留一定的小数位数.
(2)出示例1。
4.962保留整数、一位小数和两位小数,它的近似数各是多少?
教师提问:保留整数,要看哪一位?怎样取近似数?
使学生明确:4.962保留整数,就要看十分位,十分位满5,向前一位进一,求得近似值数5.
学生讨论:4.962保留一位小数和两位小数,要看哪一位?怎样取近似数?
使学生明确:4.962保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数5.0.4.962保留两位小数就要看千分位,千分位上不满5,舍去.
分组讨论:保留一位小数5.0十分位上的0能不能去掉为什么
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位
(3)讨论分析:5.0和5数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是5.0,原来的长度在4.95与5.05之间.保留整数为5,原来的准确长度在4.5与5.5之间,所以5.0比5精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(4)小结:
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几然后按四舍五入法决定是舍还是入.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(5)练一练分组合作学习.
(三)巩固发展
1.填空:
求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位
2.填空:
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的0不能丢掉.
3.练习二十六第1题.
4.练习二十六第4、5题
学生口答。
(四)全课小结
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用四合五入法保留小数位数.要注意保留小数位数越多,精确程度越高.
(五)布置作业
练习二十六第2、3题.
小数近似数的教案【篇5】
一、教学目标:
1.使学生会根据要求用四舍五入的方法求一个小数的近似数。
2.在数学的活动过程中,进一步培养学生的思维能力,学会用知识迁移的方法学习新知,并体会数学在日常生活中的广泛应用。感受数学的文化价值。
二、教学重点:
会根据要求用四舍五入的方法求一个小数的近似数。
三、教学难点:
理解求小数的近似值时小数末尾的零不能去掉的原因。
四、教学过程:
(一)复习铺垫,揭示课题。
1.把下列各数四舍五入到万位或亿位。
24800995720
46028000005975600800
四舍五入到万位的方法是:
四舍五入到亿位的方法是:
四舍五入到万位或亿位方法的共同点是:
2.揭示课题:在生活中近似数的应用非常广泛,整数的近似数我们已经学会了,那么小数的近似数怎么求呢?这就是我们今天要学习的内容。
(二)自主学习,建构模型。
1.自学例9.
明确例9中的数学信息及所需要解决的问题。
出示:教材例9情境图。
围绕导学单进行自主学习。
2.自学。
在学生自学时,教师收集学生求近似数的错例,备用。
导学单
1.精确到十分位和百分位分别要保留几位小数?
2.回忆求整数近似数的方法,试着做例9.
3.想一想:近似数1.50末尾的0能去掉吗?近似数1.5和1.50,哪个更精确一些?
3.小组交流。
交流内容
1.1.496亿千米精确到十分位要保留几位小数?大约是多少?
2.1.496亿千米精确到百分位要保留几位小数?大约是多少?
3.比较两题的结果,这里的1.5和1.50相等吗?近似数1.50末尾的0能去掉吗?为什么?
4.求整数和小数近似数有哪些共同点?
导学要点
进一步分析近似数1.5和1.50所表示的准确数的区别。
小结:在表示近似数时,小数末尾的0不能去掉。
1.全班交流。
分析黑板上学生在自学中出现的各种情况,给予适当点评。
2.回忆学习过程。
在教师的引导下,总结学习过程:回忆相关旧知、方法迁移、解决新知。
师:刚才我们是通过什么办法,学会了求小数的近似数的?
师:数学知识间有着密切的联系,利用旧知的迁移是探究学习新知的好方法。
3.总结求近似数的方法。
a.完成试一试。学生独立完成,组织交流。
b.怎样求一个小数的近似数?
要求学生一起梳理求一个小数的近似数的方法和注意点。
指导归纳:①弄清保留几位小数②确定看哪一位上的数,用四舍五入法求出结果。
求一个小数的近似数时有什么注意点?(正确使用,近似数末尾的0不能去掉。)
(三)分层练习,内化提升。
适应练习
1.练一练。
点拨:比较两小题要求精确到的数位不同。
2.练习七第5题。
近似数末尾的0不能去掉。
3.练习七第6题。
要求学生完成改写后放在原题中读一读、比一比。
变式练习
1.练习七第7题。
学会区分精确数与近似数。
2.练习七第8题。
改写与求近似数的对比练习。
创编练习
1.在下面的□里填适当的数字。
□.□□2.3
□.□□>2.3
2.判断:准确数大于近似数。()
3.填出下面的小数各在哪两个整数之间。
()<4.6<()()<48.2<()
()>11.12>()()>0.9>()
(四)课作
完成《补充习题》第30、31页第2、4、6、7题。
帮助学困生,收集典型错例,讲评时所用。
校对作业,分析典型错例,统计正确率,错误的订正。全对的做提高题。
【提高题】
(1)在下面的□里可以填哪些数?
12.5□12.59.□10.0
(2)一个三位小数精确到百位后是8.53,这个三位小数最大是(),最小是()。
小数近似数的教案【篇6】
教学目标:
使学生掌握求小数的近似数和把较大的数改写成用万或亿做单位的数的方法,并能正确地改写和取它的近似数。
教学重点:
能正确地改写与取近似数。
教学难点:
近似数与四舍五入的关系及区别。
教学过程:
一、复习整理。
师:前几天我们学习了什么知识?(取小数的近似数和把较大的数改写成用万或亿作单位的数的取值方法)分别说说方法是怎样的?
二、分类练习
(一)取小数的近似数的练习。
1、求0.8395的近似数,分别保留整数、一位小数、两位小数和三位小数。
(1)人人练习
(2)说说取近似值的方法。
2、填表:
用小数表示
保留两位小数
保留一位小数
保留整数
3、小组讨论
出示:下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
3.8711.057.6439.07
(1)小组讨论。
(2)校对。问:怎样判定某个小数在哪两个自然数之间?求它们各近似于哪个数,实际上就是求它的什么数?
小结:在整数部分和比整数部分大1的这两个数之间,求它们各近似于哪个自然数,只要取出它保留整数的近似数就可以了。
(二)把较大的数改写成用万或亿作单位的数
1、(1)把36900和172800改写成用万做单位的数,并保留整数。
(2)557000000和2097000000改写成用亿做单位的数,并保留一位小数。
(独立练习,说说改写的方法)
得出:一点,二去,三添
2、应用P150(5、6)
(学生独立练习,校对)
(三)想一想
(1)哪些小数的百分位四舍后成为5.2?写了其中的两个。
(2)哪些小数百分位五入后成为3.0?写出其中两个
三、课堂总结。
小数近似数的教案【篇7】
教学目标
(一)使学生能根据要求用四舍五入法求一个小数的近似数。
(二)使学生学会把较大的整数改写成以万或亿作单位的小数。
教学重点和难点
求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。
把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。
学习新课
(一)复习准备
我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?
启发学生说出:省略万后面的尾数,看千位上的数是3,根据四舍五入法要舍去,得出239562万;省略千位后面的尾数,要看百位上的数是9,应该入上去,2395624千。
师:求一个整数的近似数用的是四舍五入法。在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了。例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米。
求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数。
板书课题:求一个小数的近似数。
(二)学习新课
1.求一个小数的近似数。
例12.953保留两位小数、一位小数和整数,它的近似数各是多少?
(1)首先要理解保留整数、一位小数、两位小数的含义。还可以怎样表述?
引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数
(2)求一个小数的近似数的方法是什么?
引导学生明确,仍然采用四舍五入法,看省略部分的最高位,是5以上的数,省去后在前一位加1,是4以下的数舍去。
在明确上述两点的基础上,让学生自己试算,得出:2.9532.95.
板书:2.9533.02.9533
引导学生分别说明省略的方法。
提问:
(1)上面求出的近似数3.0,为什么末尾的0不能去掉?
(2)上面求出的两个近似数3.0和3,哪个更精确些?
引导学生讨论后明确:3.0是保留一位小数,表示精确到十分位,3是保留整数,表示精确到个位,所以3.0要更精确些。由此可知近似数末尾的0是不能去掉的,因为它表示近似数的精确度的。
总结求近似数应注意什么?
在学生议论的基础上,概括出注意两点:
(1)要根据题目的要求取近似值。保留整数,就要看十分位;保留一位小数,就要看百分位然后按照四舍五入法决定舍还是入。
(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,应保留,不能去掉。
反馈:完成115页做一做(上面)。
订正时说明保留的方法。
2.改写成以万或亿作单位的数。
例21992年我国生产洗衣机7127000台。把这个数改写成用万台作单位的数。
提问:
(1)把7127000台改写成用万台作单位的数,应该用多少来除?
(2)应该把7217000缩小多少倍?
(3)小数点应该向哪个方向移动几位?
学生回答后,教师说明,为了简便只在万位后面点上小数点,去掉小数末尾的0.
板书;7127000台=712.7万台
反馈:把348000改写成以万作单位的数。
348000=34.8万
师启发提问:既然把一个数改写成以万作单位的数,只要在万位后面点上小数点,再写上单位万,那么要把一个数改写成以亿作单位的数,应该怎么办?
3.改写成以亿作单位的数后,再求近似数。
例31991年我国生产原油139000000吨。把这个数改写成用亿吨作单位的数。
学生独立改写成139000000吨=1.39亿吨,并说出改写的方法。
提问:如果要求保留一位小数怎么办?
启发学生自己得出(接上题)1.4亿吨,并说出保留一位小数的方法。
反馈:完成115页下面做一做
订正时要注意,防止改写与省略混淆。
4.区别对比。
例2、例3的学习中,有的数需要把它改写成以万或亿作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?
引导学生讨论后明确:
(1)求近似数需要省略某位后面的尾数。保留整数,表示精确到个位,就要看十分位是几,然后按照四舍五入法决定是舍还是入。求出的是近似数,应用表示,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。最后要注意别忘记写单位万或亿,遇有单位名称的要写上单位名称。
(2)把一个数改写成以万或亿作单位的数,求的是准确数,就在万或亿位后面点上小数点,小数末尾的0要去掉,遇有单位名称的要写上单位名称,应用=表示,并写上单位万或亿。
(三)巩固反馈
1.我国第二大岛海南岛的面积是32200平方千米,把这个数改写成以万平方千米作单位的数,再保留一位小数。
2.把135000000人改写成以亿人作单位的数,再保留一位小数。
(四)作业
练习二十四第1~5题。
课堂教学设计说明
本节课把求一个数的近似数与把一个数改写成以万或亿作单位的数两个概念同时进行,便于学生区别对比。
求一个数的近似数与求一个整数的近似数一样,也是根据需要用四舍五入法保留位数。由于保留的位数不同,求得的近似数的精确度也不一样,特别是末尾的0不能去掉的道理要让学生明白。
把一个数改写成以万或亿作单位的数,也是在前边学习的基础上进行的,最后通过对比明确这两个概念的区别,从意义、方法、符号以及末尾0的处理几方面分清,共同点是都不要忘记写单位万或亿及单位名称。
练习时采用讲练结合方式,最后通过综合练习形成熟练技巧。
板书设计
求一个小数的近似数
例12.953保留两位小数,一位小数和整数,它的近似数各是多少?
四舍五入法
2.9532.95省略百分位后面的尾数
2.9533.0省略十分位后面的尾数
2.9533省略个位后面的尾数
例21992年我国生产洗衣机7127000台,把这个数改写成用万台作单位的数。
7127000台=712.7万台
例31991年我国原油产量是139000000吨,把这个数改写成用万吨作单位的数。再保留一位小数。
139000000吨=1.39亿吨
1.4亿吨
求近似数与改写的区别
意义上
方法上
符号上
小数末尾0的处理上
[精选课件] 整十数加减整十数教学反思其二
事在人为,而方案规划也需先行。面对即将开展的工作项目,我们或多或少都应该准备好一份方案,方案是具有指导思想的作用,你知道有哪些方案可以参考吗?为了让您在使用时更加简单方便,下面是小编整理的“[精选课件] 整十数加减整十数教学反思其二”,供您参考,希望能够帮助到大家。
《整十数加减整十数》是两位数计算的起始课,是学生进行100以内加减法的基础,所以是计算教学中的重点内容之一。为了避免计算课的枯燥,我创设了具体生动的情境和一系列游戏,来吸引学生的注意力,这样丰富多彩的活动既有利于学生理解和掌握计算方法,又可以增强学生学习数学的兴趣。本堂课的教学目的在很轻松的氛围中得以完成。
我在教本节课时重视了以下几点。
1.创设生动具体的情境,让学生明白算理。
本课教学中我充分利用教材提供的资源,使计算教学成为学生丰富多彩的学习活动,整堂课,我尽量鼓励学生自己发现问题,解决问题的能力。课开始,通过书本提供的情景图,让学生先提出问题,备课前我预设了几个学生可能会提出的问题,然后,出示,让学生帮助我解决,而不是要求他们解决,提升学生的位置,可以增强他们的积极性。然后通过学生间互相讨论,总结出多种计算方法,最后把学生的发现再做整理即可。
如为了在加法教学中突破重难点,让学生明白算理。我引导学生使用摆小棒的方式。边摆边说,再摆、说给同桌听,再全班摆说交流。然后进行算理的研究。明白10+20就是1捆小棒加2捆小棒得3捆小棒,也就是1个十加2个十得5个十。
2.引导学生独立思考与合作交流。
课程标准认为:动手实践、自主探索、合作交流是学生学习数学的重要方式。在“探究新知”这一过程中,我创设了有意义的问题情境和数学活动,激励每一个学生在动脑观察中独立思考,鼓励学生发现问题、提出问题,并与同伴进行交流。在次基础上引导学生思考计算方法,组织学生交流计算方法,使学生在自主探索与合作交流中明白了算理,掌握了算法。
3.组织好练习,进一步培养计算能力。
培养学生的计算能力,是小学数学教学的重要任务。要达到这个目标,除了让学生通过动手操作、自主探索、合作交流掌握算法,还需要组织好练习。因此,我在设计本课的练习时注意到了这样几点:a.讲究练习的形式;b.多进行口头练习;c.突出难点,讲究实效。
因为小学生的学习大多以无意识和形象思维为主,他们好奇好胜,注意的稳定性和持久性差。新课标在《基本理念》里也指出:“学生的数学学习活动应当是一个生动活泼、富有个性的过程。”依据新课程理念和小学生的年龄特点,我将练习设计成一系列富有情趣的练习,如:通过闯关练习,进入游戏环节(钓鱼游戏;摘苹果游戏;找家家游戏)。目的是既吸引了学生学习的兴趣,又便于自己更好的串连教学。使学生主动学,乐于学,享受学习带来的乐趣。让学生以无比愉悦的心情投入练习活动,同时也达到了巩固知识的目的。
总之,在本节课的教学中,学生学得轻松愉快。但也有不足,如在讲授过程中我对于算法的探究部分,还没有照顾到所有学生,应多让那些接受能力差的学生多说说,让他们也能够掌握。
热搜教案: 《小数的意义》教学反思790字
要想让事情按预期发展,作好方案的制订尤为重要。根据领导新分配的任务,我们最好是预先准备好行动的方案,好的方案对于行动的成功有着重要意义,你知道有什么写方案的技巧吗?小编特地为您收集整理“热搜教案: 《小数的意义》教学反思790字”,供大家参考,希望能帮助到有需要的朋友。
今天数学课上,教学完小数的意义新课之后,大部分学生的感觉是:老师说小数的意义不好理解,也不难啊!从学生的表情上看,他们略有得意之感。于是,我故意问:“你们觉得小数的.意义难不难啊?”孩子们异口同声地说:“不难——”我又问:“是真的嘛小数的意义应用的很广,老师没教你们难的知识啊!”孩子们顿时坐好,等待我提出新的问题,看到孩子们这样,我的心中有说不出的高兴。
我在黑板上画了一个数轴,在数轴上确定了“0”和“1”,然后把0——1之间平均分成了10份,用一个箭头指向第二个等分点处,我问:“这个地方用分数怎样表示?怎样用小数表示?”孩子们想了想,有好多孩子举起了手,给出了正确答案,我很欣慰,学生理解了小数的意义。接着我把数轴上了“1”改成了0.1,这回我用一个箭头指向了第一个等分点,问:“这个地方用分数怎样表示呢?怎样用小数表示呢?”这下,教室里静悄悄的,多数的孩子都在认真思考,一分钟、两分钟、三分钟没有人给出答案,我笑了,孩子们看着我,目光中充满了期待。突然,嘉琪说:“分数是1/100,小数是0.01。”我赶紧肯定了这个答案,紧接着问:“你是怎么想到的?”她无语。“你们想知道吗?”我抬高了嗓音。“想!”“大家看数轴,把哪部分平均分成了10份?”“把0——0.1之间平均分成了10份。”我指着10份中的一小份说:“10个这样的一小份是0.1,对吗?”“对。”我来到黑板小数的数位顺序表前,指着十分之一说:“10个多少是十分之一?”孩子们恍然大悟,:“哦,真是一百分之一!”“为什么?”有人回答:“相邻的两个计数单位之间的进率是10,十分位右边的一位是百分位,所以10个一百分之一就是十分之一。”“哈哈,明白了?”孩子们面带笑容,“明白了!”我指着第七个等分点让学生说分数和小数,孩子们对答如流。最后,我把“0.1”改成了“0.01”,指着第一个等分点让孩子们说出分数和小数,这回有很多人很快举起了手,给出了正确的答案和理由。我开心,因为孩子们理解了知识;孩子们开心,因为他们解决了问题。
“孩子们,知识是有联系的,要灵活运用学过的知识,这样才能更快更准地解决问题。”
这节课结束了,但是给我的感受是:一个老师
学生遇到解不开的问题时,一个手势,一个点拨,一个鼓励,一个引导,对于孩子们来说,都是解开问题的钥匙啊!
[范例参考]《黄河的主人》教学反思其二
随着人们的生活物质水平不断提高,我们需要撰写各种各样的方案,方案范文有着很重要的优点,如何才能写好方案呢?下面是小编为大家整理的“[范例参考]《黄河的主人》教学反思其二”,供您参考,希望能够帮助到大家。
可以说很多学生事前都没有看过《黄河的主人》这篇课文,对于课文的重点问题:为什么艄公被称为黄河的主人?按照传统的方法来看,可以从黄河的磅礴气势,羊皮筏子的小而轻,乘客的谈笑风生等方面来理解和感受艄公的勇敢和镇静的风采。其实就是三个方面的衬托出艄公的勇敢和镇静。那么我们可以把文章的后半部分不要发给学生,通过前面几个环节的渲染、衬托上,让学生猜猜谁是黄河的主人呢?这样一来,课堂气氛会更浓,学生学习的主动性会更大。
1、黄河和艄公两者的对比
2、羊皮筏子体积之小与其载物这之多的对比
3、旁观者和当事人的对比
在课堂上抓住这三个对比,不仅能帮助学生在头脑中树立起黄河的主人——艄公那勇敢、智慧、镇静、机敏的形象,使学生受到强烈的感染,从而对艄公肃然起敬,还让学生深深明白课文各部分与中心是紧密相连的。但是,一定要注意,学生对艄公的敬仰之情,是在老师有意识的引导之中“牵”出来的,要使在孩子的内心真正有很深的感受还应当在各个对比之中
“用心”读书,自然而然发自内心地生成,在一遍遍的读书过程中慢慢感受到,慢慢从心中“长”出来的真情实感,而不应该是老师带着学生从文章中生硬地“对比”出来的。
优文收藏: 《小数的性质》教学反思篇二
随着社会的不断规范发展,我们时常会涉及到方案范文的写作,方案范文突显出了它的优点,写方案要注意哪些方面呢?下面是小编为大家整理的“优文收藏: 《小数的性质》教学反思篇二”,仅供参考,大家一起来看看吧。
“小数的性质”这部分内容教材结合现实情境,通过引导学生自主地观察、比较和归纳,探索小数的性质。例题分两个层次安排的:第一层次通过两个小朋友交流铅笔和橡皮单价的情境,引起学生进行比较的需要,再通过“橡皮和铅笔的单价相等吗?为什么?”的讨论和交流,体会用不同的方法比较铅笔和橡皮的单价,结果都是一样的。 第二层次是让学生借助直尺图自主比较“0.100米、0.10米和0.1米”的大小,它们也是相等的。依据情境图和得到的等式进行观察、比较等活动,感知上述两组等式存在着“小数末尾去掉0或添上,小数的大小不变”的特点,从而归纳概括出小数的性质。
上面是教材上例6的情境图,呈现的是购物情境,通过思考一组食品的价格中哪些“0”可以去掉,理解“化简”的概念,学会化简小数的方法,进一步加深对小数性质的理解。我在课堂上是这样展开的:
⑴学生独立思考,完成书上的填空,交流得到的答案,牛奶2.80元、面包4.00元和合计10.50元小数末尾的0可以去掉。这样一个过程是“小数性质”应用的内化过程,学生们在练习中会应用小数的性质把小数末尾的0去掉;
⑵理解“化简”的含义。教师指出像2,80元=2.8元一样,将小数写法简化的过程就是“化简”;
⑶验证答案。利用元、角、分这些单位进行验证,例如2.80元是2元8角,2.8元也是2元8角,2.80元和2.8元是相等的,所以2,80元=2.8元;3.05元表示3元05分,假如3.05元中间的0去掉后就成了3元5角,大小不再相等,所以3.05元中间的0不能去掉。利用元、角、分这些单位进行验证,和利用小数的性质化简得到的答案是一致的,从而达到进一步理解小数性质和应用小数性质化简小数的合理性;
⑷质疑。“为什么超市的消费单上的钱数都是两位小数,不写简单的小数呢?”教师在本题结束反馈时抛出了这个问题。学生的回答有两种,一种理解为都是两位小数便于超市进行加法计算,另一种是为了价钱精确些。第一种理解无意和小数加减法想吻合,第二种理解初步体会到保留两位小数可以使小数表达得精确些,回答不是到位,通过教师的补充才理解到位,“这里都是两位小数,超市告诉顾客本超市计算钱数时精确到分。”
“独立解决问题”---“理解“化简”的含义”-----“验证答案”----“质疑”这四个小环节,没有遵循常规使用的利用“小数性质”反馈、矫正,增加了“验证”和“质疑”的环节,旨在继续沟通实际生活与小数性质之间的联系,培养小数多角度地分析问题和解决问题,“质疑”环节则明显拓宽了学生的思维,为后续的学习丰富了感性认识,奠定了良好的学习基础。当然,不足之处也有,没有利用“小数性质”反馈、矫正,此处演绎思维培养的资源无意浪费了,且“小数性质”的应用没有得到进一步的强化,会减缓学生技能的形成的进程。
2024教案:《想别人没想到的》教学反思其二
经验告诉我们,成功是留给有准备的人。当我们面临各种各样的项目建设,首先就应该要准备好一份方案,每一个方案的实施都有它的意义,是否有可以参考的方案呢?下面是小编精心为您整理的“2024教案:《想别人没想到的》教学反思其二”,供您参考,希望能够帮助到大家。
《想别人没想到的》这是一篇略读课文。讲述的是一位画师考查三个徒弟,看谁能在一张同样大小的纸上,画出的骆驼最多,大徒弟用细笔画满了很小很小的骆驼,二徒弟画的是许许多多骆驼的头,小徒弟虽然只画了两只骆驼,一只完整,一只露出脑袋和半截脖子,但画面营造出数不尽的骆驼情境,让人拍案叫绝。可以看出前两位徒弟在纸上画的骆驼是可以数出来的,是有限的。而小徒弟的画面上虽然只有两只骆驼,但他却给我们留下了空白,也许那只骆驼的后面还跟着无数只骆驼,这是以少代多,是无限的。
这篇课文内容浅显易懂 ,学生只需读几遍就可理解,所以在教学设计中我设计了几个环节,一是以故事开头,以启发学生的思考,激发学生的学习兴趣。在学生的思维和兴趣充分调动的基础上,导入本课的学习,让他们以浓厚的兴趣进入到课堂中来。二是抓住课题:想别人没想到的,小徒弟是怎么画的,为什么他的画受到称赞?学生结合书本和插图讨论交流,总结他是想别人没想到的,那么这时候,别人又是怎么想的呢?引向大徒弟和二徒弟是怎么画的?三是拓展延伸。学完课文后,请孩子们说说,你还知道哪些有关想别人没想到的这样的故事。学生纷纷举手,举出了很多我们学过的课文:《司马光砸缸》、《曹冲称象》、《爱迪生救妈妈》等,结束时,我又问学生,还有没有其他的办法可以画出更多的骆驼吗?学生们思维活跃,想出了很多好办法。如:画上一座山,写上“骆驼洞”;在沙漠中画上很多很多脚印等等。
通过这堂课的教学,我明白教师在教学中应多鼓励学生大胆想象,也可以从生活实际中提出一些问题,启发学生提出改进或解决的办法。鼓励学生在今后的学习生活中,把自己随时想到的一些好点子记录下来。